none
给我几个加密解密的代码 RRS feed

答案

  • #ifndef _AES_H_
    #define _AES_H_

    /* 说明:
     *   加密解密只是能对128位、192位或256位的明文或密文进行
     */
    #include <iostream>
    #include <string>

    using namespace std;

    #define BYTE unsigned char
    enum KeySize { Bits128, Bits192, Bits256 };  // key size, in bits, for constructor

    class Aes
    {
     friend void DumpArray(BYTE* bytes, int size);
     friend void Dump2DArray(BYTE** arr, int rsize, int csize);
    private:
     int Nr;         // number of rounds. 10, 12, 14.
     int Nk;         // key size in 32-bit words.  4, 6, 8.  (128, 192, 256 bits).
     int Nb;         // block size in 32-bit words.  Always 4 for AES.  (128 bits). 

     BYTE** w;  // key schedule array. 
     BYTE* key;  // the seed key. size will be 4 * keySize from ctor.
     BYTE** State; // State matrix

     static BYTE Rcon[11][14]; // Round constants.
     static BYTE Sbox[16][16]; // Substitution box
     static BYTE iSbox[16][16]; // inverse Substitution box
     static int ShiftOffsets[3][3];
    public:
     ~Aes();
     Aes(KeySize keySize, BYTE* keyBytes);

     void Cipher(BYTE* output, const BYTE* input);  // encipher 128-bit, 192-bit, 256-bit input
     void InvCipher(BYTE* output, const BYTE* input);    // decipher 128-bit, 192-bit, 256-bit input

     void SetNbNkNr(KeySize keySize);

    // void BuildRcon();
    // void BuildSbox();
    // void BuildInvSbox();

     void SubBytes();
     void InvSubBytes();

     void ShiftRows();
     void MixColumns();
     void InvShiftRows(); 
     void InvMixColumns();

     void KeyExpansion();
     void SubWord(BYTE word[4]);
     void RotWord(BYTE word[4]);
     void AddRoundKey(int round); 

     static BYTE gfmultby01(BYTE b);
     static BYTE gfmultby02(BYTE b);
     static BYTE gfmultby03(BYTE b);
     static BYTE gfmultby09(BYTE b);
     static BYTE gfmultby0b(BYTE b);
     static BYTE gfmultby0d(BYTE b);
     static BYTE gfmultby0e(BYTE b);

    private:
     Aes(const Aes& aes);
     Aes operator=(const Aes& aes);
     
     BYTE* temp1; // temporary variable for KeyExpande()
     BYTE** temp2; // temporary variable for ShiftRows(), InvShiftRows(), MixColums(), InvMixColumns()
    };
    #endif

    // The number of bytes to shift by in shiftRow, indexed by [Nb/2 - 1][row - 1]
    // ( Nb ranges in [4, 6 , 8], row ranges in [1, 2, 3], note that row 1 denotes second row)
    // BuildShiftOffsets
    int Aes::ShiftOffsets[3][3] = {
     1, 2, 3,
     1, 2, 3,
     1, 3, 4
    };

    // BuildRcon
    BYTE Aes::Rcon[11][14] = {
     {0x00, 0x00, 0x00, 0x00},
     {0x01, 0x00, 0x00, 0x00},
     {0x02, 0x00, 0x00, 0x00},
     {0x04, 0x00, 0x00, 0x00},
     {0x08, 0x00, 0x00, 0x00},
     {0x10, 0x00, 0x00, 0x00},
     {0x20, 0x00, 0x00, 0x00},
     {0x40, 0x00, 0x00, 0x00},
     {0x80, 0x00, 0x00, 0x00},
     {0x1b, 0x00, 0x00, 0x00},
     {0x36, 0x00, 0x00, 0x00} };

    // BuildSobx
    BYTE Aes::Sbox[16][16] = {  // populate the Sbox matrix
        /* 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f */
        /*0*/  {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76},
        /*1*/  {0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0},
        /*2*/  {0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15},
        /*3*/  {0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75},
        /*4*/  {0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84},
        /*5*/  {0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf},
        /*6*/  {0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8},
        /*7*/  {0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2},
        /*8*/  {0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73},
        /*9*/  {0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb},
        /*a*/  {0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79},
        /*b*/  {0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08},
        /*c*/  {0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a},
        /*d*/  {0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e},
        /*e*/  {0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf},
        /*f*/  {0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16} };

    // BuildInvSbox
    BYTE Aes::iSbox[16][16] = {  // populate the iSbox matrix
        /* 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f */
        /*0*/  {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb},
        /*1*/  {0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb},
        /*2*/  {0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e},
        /*3*/  {0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25},
        /*4*/  {0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92},
        /*5*/  {0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84},
        /*6*/  {0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06},
        /*7*/  {0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b},
        /*8*/  {0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73},
        /*9*/  {0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e},
        /*a*/  {0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b},
        /*b*/  {0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4},
        /*c*/  {0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f},
        /*d*/  {0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef},
        /*e*/  {0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61},
        /*f*/  {0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d} };

    Aes::Aes(KeySize keySize, BYTE* keyBytes)
    {
     SetNbNkNr(keySize);

     this->key = new BYTE[this->Nk * 4]; // 16, 24, 32 bytes
     memcpy(this->key, keyBytes, sizeof(BYTE) * this->Nk * 4);
     
     //BuildRcon();
     //BuildSbox();
        //BuildInvSbox();
        int r;

     this->w = new BYTE*[Nb * (Nr+1)];
     for (r = 0; r < Nb*(Nr+1); r++)
     {     // 4 columns of bytes corresponds to a word
      this->w[r] = new BYTE[4]; 
     }

     this->State = new BYTE*[4];
     for (r=0; r<4; r++)
     {
      this->State[r] = new BYTE[this->Nb];
     }

     temp1 = new BYTE[4];
     temp2 = new BYTE*[4];
     for (r=0; r<4; r++)
     {
      temp2[r] = new BYTE[4];
     }

     KeyExpansion();  // expand the seed key into a key schedule and store in w  
    }

    Aes::~Aes()
    {
     if (NULL != this->temp1)
     {
      delete[] this->temp1;
      this->temp1 = NULL;
     }

     if (NULL != this->temp2)
     {
      for (int r=0; r<4; r++)
      {
       if (NULL != this->temp2[r])
       {
        delete[] this->temp2[r];
        this->temp2[r] = NULL;
       }
      }
      delete[] this->temp2;
      this->temp2 = NULL;
     }

     if (NULL != this->State)
     {
      for (int r=0; r<4; r++)
      {
       if (NULL != this->State[r])
       {
        delete[] this->State[r];
        this->State[r] = NULL;
       }
      }
      delete[] this->State;
      this->State = NULL;
     }

     if (NULL != this->key)
     {
      delete[] this->key;
      this->key = NULL;
     }

     if (NULL != this->w)
     {
      for (int r = 0; r < Nb*(Nr+1); r++)
      {     
       delete[] this->w[r]; 
      }
      delete[] this->w;
      this->w = NULL;
     }
    }

    void Aes::SetNbNkNr(KeySize keySize)
    {
     this->Nb = 4;  // block size always = 4 words = 16 bytes = 128 bits for AES

        if (Bits128 == keySize)
        {
            this->Nk = 4;   // key size = 4 words = 16 bytes = 128 bits
            this->Nr = 10;  // rounds for algorithm = 10
        }
        else if (Bits192 == keySize)
        {
            this->Nk = 6;   // 6 words = 24 bytes = 192 bits
            this->Nr = 12;
        }
        else if (Bits256 == keySize)
        {
            this->Nk = 8; // 8 words = 32 bytes = 256 bits
            this->Nr = 14;
        }
    }

    void Aes::RotWord(BYTE word[4])
    {
     BYTE tmp;
     tmp = word[0];
     
     word[0] = word[1];
     word[1] = word[2];
     word[2] = word[3];

     word[3] = tmp;
    }

    void Aes::SubWord(BYTE word[4])
    {
     word[0] = this->Sbox[ word[0] >> 4 ][ word[0] & 0x0f ];
     word[1] = this->Sbox[ word[1] >> 4 ][ word[1] & 0x0f ];
     word[2] = this->Sbox[ word[2] >> 4 ][ word[2] & 0x0f ];
     word[3] = this->Sbox[ word[3] >> 4 ][ word[3] & 0x0f ]; 
    }

    void Aes::KeyExpansion()
    {
     int row;

     for (row = 0; row < Nk; row++)
     {
      this->w[row][0] = this->key[4*row];
      this->w[row][1] = this->key[4*row+1];
      this->w[row][2] = this->key[4*row+2];
      this->w[row][3] = this->key[4*row+3];
     }

     //BYTE temp[4];

     for (row = Nk; row < Nb * (Nr+1); row++)
     {
      temp1[0] = this->w[row-1][0];
      temp1[1] = this->w[row-1][1];
      temp1[2] = this->w[row-1][2];
      temp1[3] = this->w[row-1][3];

      if (row % Nk == 0) 
      {
       RotWord(temp1);
       SubWord(temp1);

       temp1[0] = (BYTE)( (int)temp1[0] ^ (int)this->Rcon[row/Nk][0] );
       temp1[1] = (BYTE)( (int)temp1[1] ^ (int)this->Rcon[row/Nk][1] );
       temp1[2] = (BYTE)( (int)temp1[2] ^ (int)this->Rcon[row/Nk][2] );
       temp1[3] = (BYTE)( (int)temp1[3] ^ (int)this->Rcon[row/Nk][3] );
      }
      else if ( Nk > 6 && (row % Nk == 4) ) 
      {
       SubWord(temp1);
      }

      // w[row] = w[row-Nk] xor temp
      this->w[row][0] = (BYTE) ( (int)this->w[row-Nk][0] ^ (int)temp1[0] );
      this->w[row][1] = (BYTE) ( (int)this->w[row-Nk][1] ^ (int)temp1[1] );
      this->w[row][2] = (BYTE) ( (int)this->w[row-Nk][2] ^ (int)temp1[2] );
      this->w[row][3] = (BYTE) ( (int)this->w[row-Nk][3] ^ (int)temp1[3] );
     }  // for loop
    }// KeyExpansion()

    void Aes::SubBytes()
    {
     for (int r = 0; r < 4; r++)
     {
      for (int c = 0; c < 4; c++)
      {
        this->State[r][c] = this->Sbox[ (this->State[r][c] >> 4) ][ (this->State[r][c] & 0x0f) ];
      }
     }
    }  // SubBytes

    void Aes::InvSubBytes()
    {
     for (int r = 0; r < 4; r++)
     {
      for (int c = 0; c < 4; c++)
      {
       this->State[r][c] = this->iSbox[ (this->State[r][c] >> 4) ][ (this->State[r][c] & 0x0f) ];
      }
     }
    }  // InvSubBytes

    void Aes::ShiftRows()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;
     int offset;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (r = 1; r < 4; r++)  // shift temp into State
     {
      for (c = 0; c < this->Nb; c++)
      {
       offset = this->ShiftOffsets[Nb/2 - 1][r - 1];
       this->State[r][c] = temp2[ r ][ (c + offset) % Nb ];
      }
     }
    }  // ShiftRows()

    void Aes::InvShiftRows()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;
     int offset;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (r = 1; r < 4; r++)  // shift temp into State
     {
      for (c = 0; c < this->Nb; c++)
      {
       offset = this->ShiftOffsets[Nb/2 - 1][r - 1];
       this->State[r][ (c + offset) % Nb ] = temp2[r][c];
      }
     }
    }  // InvShiftRows()

    void Aes::MixColumns()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (c = 0; c < this->Nb; c++)
     {
      this->State[0][c] = (BYTE) ( (int)gfmultby02(temp2[0][c]) ^ (int)gfmultby03(temp2[1][c]) ^
              (int)gfmultby01(temp2[2][c]) ^ (int)gfmultby01(temp2[3][c]) );

      this->State[1][c] = (BYTE) ( (int)gfmultby01(temp2[0][c]) ^ (int)gfmultby02(temp2[1][c]) ^
              (int)gfmultby03(temp2[2][c]) ^ (int)gfmultby01(temp2[3][c]) );

      this->State[2][c] = (BYTE) ( (int)gfmultby01(temp2[0][c]) ^ (int)gfmultby01(temp2[1][c]) ^
              (int)gfmultby02(temp2[2][c]) ^ (int)gfmultby03(temp2[3][c]) );

      this->State[3][c] = (BYTE) ( (int)gfmultby03(temp2[0][c]) ^ (int)gfmultby01(temp2[1][c]) ^
              (int)gfmultby01(temp2[2][c]) ^ (int)gfmultby02(temp2[3][c]) );
     }
    }  // MixColumns

    void Aes::InvMixColumns()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (c = 0; c < this->Nb; ++c)
     {
      this->State[0][c] = (BYTE) ( (int)gfmultby0e(temp2[0][c]) ^ (int)gfmultby0b(temp2[1][c]) ^
              (int)gfmultby0d(temp2[2][c]) ^ (int)gfmultby09(temp2[3][c]) );

      this->State[1][c] = (BYTE) ( (int)gfmultby09(temp2[0][c]) ^ (int)gfmultby0e(temp2[1][c]) ^
              (int)gfmultby0b(temp2[2][c]) ^ (int)gfmultby0d(temp2[3][c]) );

      this->State[2][c] = (BYTE) ( (int)gfmultby0d(temp2[0][c]) ^ (int)gfmultby09(temp2[1][c]) ^
              (int)gfmultby0e(temp2[2][c]) ^ (int)gfmultby0b(temp2[3][c]) );

      this->State[3][c] = (BYTE) ( (int)gfmultby0b(temp2[0][c]) ^ (int)gfmultby0d(temp2[1][c]) ^
              (int)gfmultby09(temp2[2][c]) ^ (int)gfmultby0e(temp2[3][c]) );
     }
    }  // InvMixColumns

    BYTE Aes::gfmultby01(BYTE b)
    {
     return b;
    }

    BYTE Aes::gfmultby02(BYTE b)
    {
     if (b < 0x80)
     {
      return (BYTE)(int)(b <<1);
     }
     else
     {
      return (BYTE)( (int)(b << 1) ^ (int)(0x1b) );
     }
    }

    BYTE Aes::gfmultby03(BYTE b)
    {
     return (BYTE) ( (int)gfmultby02(b) ^ (int)b );
    }

    BYTE Aes::gfmultby09(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
           (int)b );
    }

    BYTE Aes::gfmultby0b(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
           (int)gfmultby02(b) ^
           (int)b );
    }

    BYTE Aes::gfmultby0d(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
                       (int)gfmultby02(gfmultby02(b)) ^
                       (int)(b) );
    }

    BYTE Aes::gfmultby0e(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
                       (int)gfmultby02(gfmultby02(b)) ^
                       (int)gfmultby02(b) );
    }

    void Aes::AddRoundKey(int round)
    {

     for (int r = 0; r < 4; r++)
     {
      for (int c = 0; c < 4; c++)
      {
       this->State[r][c] = (BYTE) ( (int)this->State[r][c] ^ (int)w[(round*4)+c][r] );
      }
     }
    }  // AddRoundKey()

    void DumpArray(BYTE* bytes, int size);
    void Dump2DArray(BYTE** arr, int rsize, int csize);

    void Aes::Cipher(BYTE* output, const BYTE* input) // encipher 128-bit, 192-bit, 256-bit input
    {
     int i;

     for (i = 0; i < (4 * Nb); i++)
     {
      this->State[i % 4 ][ i / 4] = input[i];
     }
     
    // DumpArray(key, Nk * 4);
    // Dump2DArray(State, 4, Nb); //

     AddRoundKey(0);

     for (int round = 1; round <= (Nr - 1); round++)  // main round loop
     {
      SubBytes();
      ShiftRows(); 
      MixColumns();
      AddRoundKey(round);

    //  Dump2DArray(State, 4, Nb); //

     }  // main round loop

     SubBytes();
     ShiftRows();
     AddRoundKey(Nr);

    // Dump2DArray(State, 4, Nb); //

     // output = state
     for (i = 0; i < (4 * Nb); i++)
     {
      output[i] = this->State[i % 4 ][ i / 4];
     }
    }

    void Aes::InvCipher(BYTE* output, const BYTE* input) // decipher 128-bit, 192-bit, 256-bit input
    {
     int i;

     for (i = 0; i < (4 * Nb); ++i)
     {
      this->State[i % 4 ][ i / 4] = input[i];
     }

     AddRoundKey(Nr);

     for (int round = Nr-1; round >= 1; round--)  // main round loop
     {
      InvShiftRows();
      InvSubBytes();
      AddRoundKey(round);
      InvMixColumns();
     }  // end main round loop for InvCipher

     InvShiftRows();
     InvSubBytes();
     AddRoundKey(0);

     // output = state
     for (i = 0; i < (4 * Nb); i++)
     {
      output[i] = this->State[i % 4 ][i / 4];
     }
    }

    //////////////////////  TEST  ////////////////////////////////
    #include <iostream>

    #define _DEBUG_

    void DumpArray(BYTE* bytes, int size)
    {
    #ifdef _DEBUG_
     char tmp[3];
     for (int i = 0; i < size; ++i)
     {
      sprintf(tmp, "%02x", bytes[i]);
      tmp[2] = '\0';

      cout<< tmp << " ";

      if ((i+1) % 4 == 0)
       cout<<endl;
     } 
    #endif
    }  // DumpArray()

    void Dump2DArray(BYTE** arr, int rsize, int csize)
    {
    #ifdef _DEBUG_
     for (int r=0; r<rsize; r++)
     {
      DumpArray(arr[r], csize);
     }
     cout<<endl;
    #endif
    }

    int main()
    {

     BYTE plainText[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
                              0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
     
     BYTE cipherText[16];

     BYTE decipheredText[16];

     BYTE keyBytes[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
                             //0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17};
     
     Aes aes(Bits128, keyBytes); 

     cout << "\n\nThe plaintext is: "<<endl;
     DumpArray(plainText, 16);

     cout << "\n\nThe key is: "<<endl;
     DumpArray(keyBytes, 16);

     aes.Cipher(cipherText, plainText);

     cout << "\n\nThe resulting ciphertext is: "<<endl;
     DumpArray(cipherText, 16);

     aes.InvCipher(decipheredText, cipherText);

     cout << "\n\nAfter deciphering the ciphertext, the result is: "<<endl;
     DumpArray(decipheredText, 16);

     cout << "\nDone"; 

        return 0;
    }

    2010年4月23日 15:56
  • 参看下面技术文章:

    http://www.joyvc.cn/OtherTechnical/OtherTechnicalGroup00061.html


    欢迎光临我的个人网站:http://www.joyvc.cn,本网站提供[IM即时通信|棋牌游戏|网游开发|UI编程|网络通讯|组件开发|图像多媒体|数据库]方面的VC/C++/C技术文章、源代码和教程资料
    2010年4月26日 6:31
    版主

全部回复

  • #ifndef _AES_H_
    #define _AES_H_

    /* 说明:
     *   加密解密只是能对128位、192位或256位的明文或密文进行
     */
    #include <iostream>
    #include <string>

    using namespace std;

    #define BYTE unsigned char
    enum KeySize { Bits128, Bits192, Bits256 };  // key size, in bits, for constructor

    class Aes
    {
     friend void DumpArray(BYTE* bytes, int size);
     friend void Dump2DArray(BYTE** arr, int rsize, int csize);
    private:
     int Nr;         // number of rounds. 10, 12, 14.
     int Nk;         // key size in 32-bit words.  4, 6, 8.  (128, 192, 256 bits).
     int Nb;         // block size in 32-bit words.  Always 4 for AES.  (128 bits). 

     BYTE** w;  // key schedule array. 
     BYTE* key;  // the seed key. size will be 4 * keySize from ctor.
     BYTE** State; // State matrix

     static BYTE Rcon[11][14]; // Round constants.
     static BYTE Sbox[16][16]; // Substitution box
     static BYTE iSbox[16][16]; // inverse Substitution box
     static int ShiftOffsets[3][3];
    public:
     ~Aes();
     Aes(KeySize keySize, BYTE* keyBytes);

     void Cipher(BYTE* output, const BYTE* input);  // encipher 128-bit, 192-bit, 256-bit input
     void InvCipher(BYTE* output, const BYTE* input);    // decipher 128-bit, 192-bit, 256-bit input

     void SetNbNkNr(KeySize keySize);

    // void BuildRcon();
    // void BuildSbox();
    // void BuildInvSbox();

     void SubBytes();
     void InvSubBytes();

     void ShiftRows();
     void MixColumns();
     void InvShiftRows(); 
     void InvMixColumns();

     void KeyExpansion();
     void SubWord(BYTE word[4]);
     void RotWord(BYTE word[4]);
     void AddRoundKey(int round); 

     static BYTE gfmultby01(BYTE b);
     static BYTE gfmultby02(BYTE b);
     static BYTE gfmultby03(BYTE b);
     static BYTE gfmultby09(BYTE b);
     static BYTE gfmultby0b(BYTE b);
     static BYTE gfmultby0d(BYTE b);
     static BYTE gfmultby0e(BYTE b);

    private:
     Aes(const Aes& aes);
     Aes operator=(const Aes& aes);
     
     BYTE* temp1; // temporary variable for KeyExpande()
     BYTE** temp2; // temporary variable for ShiftRows(), InvShiftRows(), MixColums(), InvMixColumns()
    };
    #endif

    // The number of bytes to shift by in shiftRow, indexed by [Nb/2 - 1][row - 1]
    // ( Nb ranges in [4, 6 , 8], row ranges in [1, 2, 3], note that row 1 denotes second row)
    // BuildShiftOffsets
    int Aes::ShiftOffsets[3][3] = {
     1, 2, 3,
     1, 2, 3,
     1, 3, 4
    };

    // BuildRcon
    BYTE Aes::Rcon[11][14] = {
     {0x00, 0x00, 0x00, 0x00},
     {0x01, 0x00, 0x00, 0x00},
     {0x02, 0x00, 0x00, 0x00},
     {0x04, 0x00, 0x00, 0x00},
     {0x08, 0x00, 0x00, 0x00},
     {0x10, 0x00, 0x00, 0x00},
     {0x20, 0x00, 0x00, 0x00},
     {0x40, 0x00, 0x00, 0x00},
     {0x80, 0x00, 0x00, 0x00},
     {0x1b, 0x00, 0x00, 0x00},
     {0x36, 0x00, 0x00, 0x00} };

    // BuildSobx
    BYTE Aes::Sbox[16][16] = {  // populate the Sbox matrix
        /* 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f */
        /*0*/  {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76},
        /*1*/  {0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0},
        /*2*/  {0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15},
        /*3*/  {0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75},
        /*4*/  {0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84},
        /*5*/  {0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf},
        /*6*/  {0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8},
        /*7*/  {0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2},
        /*8*/  {0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73},
        /*9*/  {0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb},
        /*a*/  {0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79},
        /*b*/  {0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08},
        /*c*/  {0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a},
        /*d*/  {0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e},
        /*e*/  {0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf},
        /*f*/  {0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16} };

    // BuildInvSbox
    BYTE Aes::iSbox[16][16] = {  // populate the iSbox matrix
        /* 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f */
        /*0*/  {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb},
        /*1*/  {0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb},
        /*2*/  {0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e},
        /*3*/  {0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25},
        /*4*/  {0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92},
        /*5*/  {0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84},
        /*6*/  {0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06},
        /*7*/  {0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b},
        /*8*/  {0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73},
        /*9*/  {0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e},
        /*a*/  {0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b},
        /*b*/  {0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4},
        /*c*/  {0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f},
        /*d*/  {0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef},
        /*e*/  {0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61},
        /*f*/  {0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d} };

    Aes::Aes(KeySize keySize, BYTE* keyBytes)
    {
     SetNbNkNr(keySize);

     this->key = new BYTE[this->Nk * 4]; // 16, 24, 32 bytes
     memcpy(this->key, keyBytes, sizeof(BYTE) * this->Nk * 4);
     
     //BuildRcon();
     //BuildSbox();
        //BuildInvSbox();
        int r;

     this->w = new BYTE*[Nb * (Nr+1)];
     for (r = 0; r < Nb*(Nr+1); r++)
     {     // 4 columns of bytes corresponds to a word
      this->w[r] = new BYTE[4]; 
     }

     this->State = new BYTE*[4];
     for (r=0; r<4; r++)
     {
      this->State[r] = new BYTE[this->Nb];
     }

     temp1 = new BYTE[4];
     temp2 = new BYTE*[4];
     for (r=0; r<4; r++)
     {
      temp2[r] = new BYTE[4];
     }

     KeyExpansion();  // expand the seed key into a key schedule and store in w  
    }

    Aes::~Aes()
    {
     if (NULL != this->temp1)
     {
      delete[] this->temp1;
      this->temp1 = NULL;
     }

     if (NULL != this->temp2)
     {
      for (int r=0; r<4; r++)
      {
       if (NULL != this->temp2[r])
       {
        delete[] this->temp2[r];
        this->temp2[r] = NULL;
       }
      }
      delete[] this->temp2;
      this->temp2 = NULL;
     }

     if (NULL != this->State)
     {
      for (int r=0; r<4; r++)
      {
       if (NULL != this->State[r])
       {
        delete[] this->State[r];
        this->State[r] = NULL;
       }
      }
      delete[] this->State;
      this->State = NULL;
     }

     if (NULL != this->key)
     {
      delete[] this->key;
      this->key = NULL;
     }

     if (NULL != this->w)
     {
      for (int r = 0; r < Nb*(Nr+1); r++)
      {     
       delete[] this->w[r]; 
      }
      delete[] this->w;
      this->w = NULL;
     }
    }

    void Aes::SetNbNkNr(KeySize keySize)
    {
     this->Nb = 4;  // block size always = 4 words = 16 bytes = 128 bits for AES

        if (Bits128 == keySize)
        {
            this->Nk = 4;   // key size = 4 words = 16 bytes = 128 bits
            this->Nr = 10;  // rounds for algorithm = 10
        }
        else if (Bits192 == keySize)
        {
            this->Nk = 6;   // 6 words = 24 bytes = 192 bits
            this->Nr = 12;
        }
        else if (Bits256 == keySize)
        {
            this->Nk = 8; // 8 words = 32 bytes = 256 bits
            this->Nr = 14;
        }
    }

    void Aes::RotWord(BYTE word[4])
    {
     BYTE tmp;
     tmp = word[0];
     
     word[0] = word[1];
     word[1] = word[2];
     word[2] = word[3];

     word[3] = tmp;
    }

    void Aes::SubWord(BYTE word[4])
    {
     word[0] = this->Sbox[ word[0] >> 4 ][ word[0] & 0x0f ];
     word[1] = this->Sbox[ word[1] >> 4 ][ word[1] & 0x0f ];
     word[2] = this->Sbox[ word[2] >> 4 ][ word[2] & 0x0f ];
     word[3] = this->Sbox[ word[3] >> 4 ][ word[3] & 0x0f ]; 
    }

    void Aes::KeyExpansion()
    {
     int row;

     for (row = 0; row < Nk; row++)
     {
      this->w[row][0] = this->key[4*row];
      this->w[row][1] = this->key[4*row+1];
      this->w[row][2] = this->key[4*row+2];
      this->w[row][3] = this->key[4*row+3];
     }

     //BYTE temp[4];

     for (row = Nk; row < Nb * (Nr+1); row++)
     {
      temp1[0] = this->w[row-1][0];
      temp1[1] = this->w[row-1][1];
      temp1[2] = this->w[row-1][2];
      temp1[3] = this->w[row-1][3];

      if (row % Nk == 0) 
      {
       RotWord(temp1);
       SubWord(temp1);

       temp1[0] = (BYTE)( (int)temp1[0] ^ (int)this->Rcon[row/Nk][0] );
       temp1[1] = (BYTE)( (int)temp1[1] ^ (int)this->Rcon[row/Nk][1] );
       temp1[2] = (BYTE)( (int)temp1[2] ^ (int)this->Rcon[row/Nk][2] );
       temp1[3] = (BYTE)( (int)temp1[3] ^ (int)this->Rcon[row/Nk][3] );
      }
      else if ( Nk > 6 && (row % Nk == 4) ) 
      {
       SubWord(temp1);
      }

      // w[row] = w[row-Nk] xor temp
      this->w[row][0] = (BYTE) ( (int)this->w[row-Nk][0] ^ (int)temp1[0] );
      this->w[row][1] = (BYTE) ( (int)this->w[row-Nk][1] ^ (int)temp1[1] );
      this->w[row][2] = (BYTE) ( (int)this->w[row-Nk][2] ^ (int)temp1[2] );
      this->w[row][3] = (BYTE) ( (int)this->w[row-Nk][3] ^ (int)temp1[3] );
     }  // for loop
    }// KeyExpansion()

    void Aes::SubBytes()
    {
     for (int r = 0; r < 4; r++)
     {
      for (int c = 0; c < 4; c++)
      {
        this->State[r][c] = this->Sbox[ (this->State[r][c] >> 4) ][ (this->State[r][c] & 0x0f) ];
      }
     }
    }  // SubBytes

    void Aes::InvSubBytes()
    {
     for (int r = 0; r < 4; r++)
     {
      for (int c = 0; c < 4; c++)
      {
       this->State[r][c] = this->iSbox[ (this->State[r][c] >> 4) ][ (this->State[r][c] & 0x0f) ];
      }
     }
    }  // InvSubBytes

    void Aes::ShiftRows()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;
     int offset;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (r = 1; r < 4; r++)  // shift temp into State
     {
      for (c = 0; c < this->Nb; c++)
      {
       offset = this->ShiftOffsets[Nb/2 - 1][r - 1];
       this->State[r][c] = temp2[ r ][ (c + offset) % Nb ];
      }
     }
    }  // ShiftRows()

    void Aes::InvShiftRows()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;
     int offset;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (r = 1; r < 4; r++)  // shift temp into State
     {
      for (c = 0; c < this->Nb; c++)
      {
       offset = this->ShiftOffsets[Nb/2 - 1][r - 1];
       this->State[r][ (c + offset) % Nb ] = temp2[r][c];
      }
     }
    }  // InvShiftRows()

    void Aes::MixColumns()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (c = 0; c < this->Nb; c++)
     {
      this->State[0][c] = (BYTE) ( (int)gfmultby02(temp2[0][c]) ^ (int)gfmultby03(temp2[1][c]) ^
              (int)gfmultby01(temp2[2][c]) ^ (int)gfmultby01(temp2[3][c]) );

      this->State[1][c] = (BYTE) ( (int)gfmultby01(temp2[0][c]) ^ (int)gfmultby02(temp2[1][c]) ^
              (int)gfmultby03(temp2[2][c]) ^ (int)gfmultby01(temp2[3][c]) );

      this->State[2][c] = (BYTE) ( (int)gfmultby01(temp2[0][c]) ^ (int)gfmultby01(temp2[1][c]) ^
              (int)gfmultby02(temp2[2][c]) ^ (int)gfmultby03(temp2[3][c]) );

      this->State[3][c] = (BYTE) ( (int)gfmultby03(temp2[0][c]) ^ (int)gfmultby01(temp2[1][c]) ^
              (int)gfmultby01(temp2[2][c]) ^ (int)gfmultby02(temp2[3][c]) );
     }
    }  // MixColumns

    void Aes::InvMixColumns()
    {
     //BYTE temp[4][Nb];
     int r;
     int c;

     for (r = 0; r < 4; r++)  // copy State into temp[]
     {
      for (c = 0; c < this->Nb; c++)
      {
       temp2[r][c] = this->State[r][c];
      }
     }

     for (c = 0; c < this->Nb; ++c)
     {
      this->State[0][c] = (BYTE) ( (int)gfmultby0e(temp2[0][c]) ^ (int)gfmultby0b(temp2[1][c]) ^
              (int)gfmultby0d(temp2[2][c]) ^ (int)gfmultby09(temp2[3][c]) );

      this->State[1][c] = (BYTE) ( (int)gfmultby09(temp2[0][c]) ^ (int)gfmultby0e(temp2[1][c]) ^
              (int)gfmultby0b(temp2[2][c]) ^ (int)gfmultby0d(temp2[3][c]) );

      this->State[2][c] = (BYTE) ( (int)gfmultby0d(temp2[0][c]) ^ (int)gfmultby09(temp2[1][c]) ^
              (int)gfmultby0e(temp2[2][c]) ^ (int)gfmultby0b(temp2[3][c]) );

      this->State[3][c] = (BYTE) ( (int)gfmultby0b(temp2[0][c]) ^ (int)gfmultby0d(temp2[1][c]) ^
              (int)gfmultby09(temp2[2][c]) ^ (int)gfmultby0e(temp2[3][c]) );
     }
    }  // InvMixColumns

    BYTE Aes::gfmultby01(BYTE b)
    {
     return b;
    }

    BYTE Aes::gfmultby02(BYTE b)
    {
     if (b < 0x80)
     {
      return (BYTE)(int)(b <<1);
     }
     else
     {
      return (BYTE)( (int)(b << 1) ^ (int)(0x1b) );
     }
    }

    BYTE Aes::gfmultby03(BYTE b)
    {
     return (BYTE) ( (int)gfmultby02(b) ^ (int)b );
    }

    BYTE Aes::gfmultby09(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
           (int)b );
    }

    BYTE Aes::gfmultby0b(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
           (int)gfmultby02(b) ^
           (int)b );
    }

    BYTE Aes::gfmultby0d(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
                       (int)gfmultby02(gfmultby02(b)) ^
                       (int)(b) );
    }

    BYTE Aes::gfmultby0e(BYTE b)
    {
     return (BYTE)( (int)gfmultby02(gfmultby02(gfmultby02(b))) ^
                       (int)gfmultby02(gfmultby02(b)) ^
                       (int)gfmultby02(b) );
    }

    void Aes::AddRoundKey(int round)
    {

     for (int r = 0; r < 4; r++)
     {
      for (int c = 0; c < 4; c++)
      {
       this->State[r][c] = (BYTE) ( (int)this->State[r][c] ^ (int)w[(round*4)+c][r] );
      }
     }
    }  // AddRoundKey()

    void DumpArray(BYTE* bytes, int size);
    void Dump2DArray(BYTE** arr, int rsize, int csize);

    void Aes::Cipher(BYTE* output, const BYTE* input) // encipher 128-bit, 192-bit, 256-bit input
    {
     int i;

     for (i = 0; i < (4 * Nb); i++)
     {
      this->State[i % 4 ][ i / 4] = input[i];
     }
     
    // DumpArray(key, Nk * 4);
    // Dump2DArray(State, 4, Nb); //

     AddRoundKey(0);

     for (int round = 1; round <= (Nr - 1); round++)  // main round loop
     {
      SubBytes();
      ShiftRows(); 
      MixColumns();
      AddRoundKey(round);

    //  Dump2DArray(State, 4, Nb); //

     }  // main round loop

     SubBytes();
     ShiftRows();
     AddRoundKey(Nr);

    // Dump2DArray(State, 4, Nb); //

     // output = state
     for (i = 0; i < (4 * Nb); i++)
     {
      output[i] = this->State[i % 4 ][ i / 4];
     }
    }

    void Aes::InvCipher(BYTE* output, const BYTE* input) // decipher 128-bit, 192-bit, 256-bit input
    {
     int i;

     for (i = 0; i < (4 * Nb); ++i)
     {
      this->State[i % 4 ][ i / 4] = input[i];
     }

     AddRoundKey(Nr);

     for (int round = Nr-1; round >= 1; round--)  // main round loop
     {
      InvShiftRows();
      InvSubBytes();
      AddRoundKey(round);
      InvMixColumns();
     }  // end main round loop for InvCipher

     InvShiftRows();
     InvSubBytes();
     AddRoundKey(0);

     // output = state
     for (i = 0; i < (4 * Nb); i++)
     {
      output[i] = this->State[i % 4 ][i / 4];
     }
    }

    //////////////////////  TEST  ////////////////////////////////
    #include <iostream>

    #define _DEBUG_

    void DumpArray(BYTE* bytes, int size)
    {
    #ifdef _DEBUG_
     char tmp[3];
     for (int i = 0; i < size; ++i)
     {
      sprintf(tmp, "%02x", bytes[i]);
      tmp[2] = '\0';

      cout<< tmp << " ";

      if ((i+1) % 4 == 0)
       cout<<endl;
     } 
    #endif
    }  // DumpArray()

    void Dump2DArray(BYTE** arr, int rsize, int csize)
    {
    #ifdef _DEBUG_
     for (int r=0; r<rsize; r++)
     {
      DumpArray(arr[r], csize);
     }
     cout<<endl;
    #endif
    }

    int main()
    {

     BYTE plainText[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
                              0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
     
     BYTE cipherText[16];

     BYTE decipheredText[16];

     BYTE keyBytes[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
           0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
                             //0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17};
     
     Aes aes(Bits128, keyBytes); 

     cout << "\n\nThe plaintext is: "<<endl;
     DumpArray(plainText, 16);

     cout << "\n\nThe key is: "<<endl;
     DumpArray(keyBytes, 16);

     aes.Cipher(cipherText, plainText);

     cout << "\n\nThe resulting ciphertext is: "<<endl;
     DumpArray(cipherText, 16);

     aes.InvCipher(decipheredText, cipherText);

     cout << "\n\nAfter deciphering the ciphertext, the result is: "<<endl;
     DumpArray(decipheredText, 16);

     cout << "\nDone"; 

        return 0;
    }

    2010年4月23日 15:56
  • 参看下面技术文章:

    http://www.joyvc.cn/OtherTechnical/OtherTechnicalGroup00061.html


    欢迎光临我的个人网站:http://www.joyvc.cn,本网站提供[IM即时通信|棋牌游戏|网游开发|UI编程|网络通讯|组件开发|图像多媒体|数据库]方面的VC/C++/C技术文章、源代码和教程资料
    2010年4月26日 6:31
    版主