locked
Microsoft.VisualBasic; IRR function RRS feed

  • Question

  • User1637720093 posted

    Hi I'm coding in c# and I'm usiing the IIR function of Microsoft.VisualBasic.

    I need values for 6 years that's 72months

    if (i <= 72)
                {
                    values[i] += C158_Calc;
                }
           
            B162_Calc = Financial.IRR(ref values, 0.1) * 12;
            row9["Month1"] = String.Format("{0:#,###,###,###.##}", B162_Calc);


    this gives me this error:

    Arguments are not valid.

    Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code.

    Exception Details: System.ArgumentException: Arguments are not valid.


    but if I say up to 10months it works, more than that not.


    Any help please.

    Tuesday, June 8, 2010 4:59 AM

All replies

  • User-837620913 posted

    I can't tell if one of your values is negative.  That is a key point.  The other is IRR tries 20 times to get an answer, and if it can't get it by then it quits (in the MSDN documentation).

    See this thread:

    http://forums.asp.net/t/1247577.aspx

    Tuesday, June 8, 2010 7:39 AM
  • User1637720093 posted

    These are my values:

    -        values    {Dimensions:[73]}    double[]
            [0]    -62881732.0    double
            [1]    379525.0    double
            [2]    379525.0    double
            [3]    379525.0    double
            [4]    379525.0    double
            [5]    379525.0    double
            [6]    379525.0    double
            [7]    379525.0    double
            [8]    379525.0    double
            [9]    379525.0    double
            [10]    379525.0    double
            [11]    379525.0    double
            [12]    379525.0    double
            [13]    421360.875    double
            [14]    421360.875    double
            [15]    421360.875    double
            [16]    421360.875    double
            [17]    421360.875    double
            [18]    421360.875    double
            [19]    421360.875    double
            [20]    421360.875    double
            [21]    421360.875    double
            [22]    421360.875    double
            [23]    421360.875    double
            [24]    421360.875    double
            [25]    455805.23625    double
            [26]    455805.23625    double
            [27]    455805.23625    double
            [28]    455805.23625    double
            [29]    455805.23625    double
            [30]    455805.23625    double
            [31]    455805.23625    double
            [32]    455805.23625    double
            [33]    455805.23625    double
            [34]    455805.23625    double
            [35]    455805.23625    double
            [36]    455805.23625    double
            [37]    493056.6307875    double
            [38]    493056.6307875    double
            [39]    493056.6307875    double
            [40]    493056.6307875    double
            [41]    493056.6307875    double
            [42]    493056.6307875    double
            [43]    493056.6307875    double
            [44]    493056.6307875    double
            [45]    493056.6307875    double
            [46]    493056.6307875    double
            [47]    493056.6307875    double
            [48]    493056.6307875    double
            [49]    533343.225182625    double
            [50]    533343.225182625    double
            [51]    533343.225182625    double
            [52]    533343.225182625    double
            [53]    533343.225182625    double
            [54]    533343.225182625    double
            [55]    533343.225182625    double
            [56]    533343.225182625    double
            [57]    533343.225182625    double
            [58]    533343.225182625    double
            [59]    533343.225182625    double
            [60]    533343.225182625    double
            [61]    576911.69160460879    double
            [62]    576911.69160460879    double
            [63]    576911.69160460879    double
            [64]    576911.69160460879    double
            [65]    576911.69160460879    double
            [66]    576911.69160460879    double
            [67]    576911.69160460879    double
            [68]    576911.69160460879    double
            [69]    576911.69160460879    double
            [70]    576911.69160460879    double
            [71]    576911.69160460879    double
            [72]    576911.69160460879    double


    Tuesday, June 8, 2010 8:00 AM
  • User-319574463 posted

    As it is a repeatable bug, I suggest that you report it to Microsoft at https://connect.microsoft.com/dashboard/?wa=wsignin1.0

    Please post a link to your report so that other experiencing the same problem may confirm your report.

    Tuesday, June 29, 2010 2:24 AM
  • User392490451 posted

    Hi, I'm having the same problem "Arguments are not valid" using the IIR function on VB (Visual Studio 2010, NetFramework 4.0)

    I thought probably the problem was the values, but using the same on excel (TIR function) it works.

    This is an examlpe:

    Dim TIR As Double
    Dim array(60) As Double

    array(0) = -10395.08
    array(1) = 257.77
    array(2) = 258
    array(3) = 258.25
    array(4) = 258.5
    array(5) = 258.74
    array(6) = 259.01
    array(7) = 259.26
    array(8) = 259.53
    array(9) = 259.78
    array(10) = 260.06
    array(11) = 260.33
    array(12) = 260.61
    array(13) = 260.89
    array(14) = 261.18
    array(15) = 261.48
    array(16) = 261.77
    array(17) = 262.07
    array(18) = 262.37
    array(19) = 262.68
    array(20) = 263
    array(21) = 263.32
    array(22) = 263.64
    array(23) = 263.97
    array(24) = 264.3
    array(25) = 264.64
    array(26) = 265
    array(27) = 265.34
    array(28) = 265.7
    array(29) = 266.06
    array(30) = 266.43
    array(31) = 266.8
    array(32) = 267.18
    array(33) = 267.56
    array(34) = 267.94
    array(35) = 268.34
    array(36) = 268.75
    array(37) = 269.15
    array(38) = 269.57
    array(39) = 269.99
    array(40) = 270.41
    array(41) = 270.85
    array(42) = 271.29
    array(43) = 271.74
    array(44) = 272.19
    array(45) = 272.65
    array(46) = 273.12
    array(47) = 273.59
    array(48) = 274.08
    array(49) = 274.56
    array(50) = 275.06
    array(51) = 275.58
    array(52) = 276.08
    array(53) = 276.6
    array(54) = 277.14
    array(55) = 277.67
    array(56) = 278.21
    array(57) = 278.77
    array(58) = 279.33
    array(59) = 279.9
    array(60) = 280.49

    TIR = IRR(array)

    I found this old post, have you finally fix this error?

    Thanks in advance.

    Thursday, July 5, 2012 12:04 PM
  • User1584858649 posted

    These are my values:

    -        values    {Dimensions:[73]}    double[]
            [0]    -62881732.0    double
            [1]    379525.0    double
            [2]    379525.0    double
            [3]    379525.0    double
            [4]    379525.0    double
            [5]    379525.0    double
            [6]    379525.0    double
            [7]    379525.0    double
            [8]    379525.0    double
            [9]    379525.0    double
            [10]    379525.0    double
            [11]    379525.0    double
            [12]    379525.0    double
            [13]    421360.875    double
            [14]    421360.875    double
            [15]    421360.875    double
            [16]    421360.875    double
            [17]    421360.875    double
            [18]    421360.875    double
            [19]    421360.875    double
            [20]    421360.875    double
            [21]    421360.875    double
            [22]    421360.875    double
            [23]    421360.875    double
            [24]    421360.875    double
            [25]    455805.23625    double
            [26]    455805.23625    double
            [27]    455805.23625    double
            [28]    455805.23625    double
            [29]    455805.23625    double
            [30]    455805.23625    double
            [31]    455805.23625    double
            [32]    455805.23625    double
            [33]    455805.23625    double
            [34]    455805.23625    double
            [35]    455805.23625    double
            [36]    455805.23625    double
            [37]    493056.6307875    double
            [38]    493056.6307875    double
            [39]    493056.6307875    double
            [40]    493056.6307875    double
            [41]    493056.6307875    double
            [42]    493056.6307875    double
            [43]    493056.6307875    double
            [44]    493056.6307875    double
            [45]    493056.6307875    double
            [46]    493056.6307875    double
            [47]    493056.6307875    double
            [48]    493056.6307875    double
            [49]    533343.225182625    double
            [50]    533343.225182625    double
            [51]    533343.225182625    double
            [52]    533343.225182625    double
            [53]    533343.225182625    double
            [54]    533343.225182625    double
            [55]    533343.225182625    double
            [56]    533343.225182625    double
            [57]    533343.225182625    double
            [58]    533343.225182625    double
            [59]    533343.225182625    double
            [60]    533343.225182625    double
            [61]    576911.69160460879    double
            [62]    576911.69160460879    double
            [63]    576911.69160460879    double
            [64]    576911.69160460879    double
            [65]    576911.69160460879    double
            [66]    576911.69160460879    double
            [67]    576911.69160460879    double
            [68]    576911.69160460879    double
            [69]    576911.69160460879    double
            [70]    576911.69160460879    double
            [71]    576911.69160460879    double
            [72]    576911.69160460879    double

    Even Excel does not report an IRR value for your cash flows, yet when I run your data through 3rd party Excel IRR function I get two different IRR values of -1.421% and -192.77% which I then checked with Excel NPV function that returns a net present value of 0 for both these IRR values

    One can also confirm the results using IRR calculator from NJ Instruments at http://njinstruments.com/

    IRR = -1.42%
    How internal rate of return was calculated

    f(r) = -62881732(1+r)^0 +379525(1+r)^-1 +379525(1+r)^-2 +379525(1+r)^-3 +379525(1+r)^-4 +379525(1+r)^-5 +379525(1+r)^-6 +379525(1+r)^-7 +379525(1+r)^-8 +379525(1+r)^-9 +379525(1+r)^-10 +379525(1+r)^-11 +379525(1+r)^-12 +421360.875(1+r)^-13 +421360.875(1+r)^-14 +421360.875(1+r)^-15 +421360.875(1+r)^-16 +421360.875(1+r)^-17 +421360.875(1+r)^-18 +421360.875(1+r)^-19 +421360.875(1+r)^-20 +421360.875(1+r)^-21 +421360.875(1+r)^-22 +421360.875(1+r)^-23 +421360.875(1+r)^-24 +455805.2363(1+r)^-25 +455805.2363(1+r)^-26 +455805.2363(1+r)^-27 +455805.2363(1+r)^-28 +455805.2363(1+r)^-29 +455805.2363(1+r)^-30 +455805.2363(1+r)^-31 +455805.2363(1+r)^-32 +455805.2363(1+r)^-33 +455805.2363(1+r)^-34 +455805.2363(1+r)^-35 +455805.2363(1+r)^-36 +493056.6308(1+r)^-37 +493056.6308(1+r)^-38 +493056.6308(1+r)^-39 +493056.6308(1+r)^-40 +493056.6308(1+r)^-41 +493056.6308(1+r)^-42 +493056.6308(1+r)^-43 +493056.6308(1+r)^-44 +493056.6308(1+r)^-45 +493056.6308(1+r)^-46 +493056.6308(1+r)^-47 +493056.6308(1+r)^-48 +533343.2252(1+r)^-49 +533343.2252(1+r)^-50 +533343.2252(1+r)^-51 +533343.2252(1+r)^-52 +533343.2252(1+r)^-53 +533343.2252(1+r)^-54 +533343.2252(1+r)^-55 +533343.2252(1+r)^-56 +533343.2252(1+r)^-57 +533343.2252(1+r)^-58 +533343.2252(1+r)^-59 +533343.2252(1+r)^-60 +576911.6916(1+r)^-61 +576911.6916(1+r)^-62 +576911.6916(1+r)^-63 +576911.6916(1+r)^-64 +576911.6916(1+r)^-65 +576911.6916(1+r)^-66 +576911.6916(1+r)^-67 +576911.6916(1+r)^-68 +576911.6916(1+r)^-69 +576911.6916(1+r)^-70 +576911.6916(1+r)^-71 +576911.6916(1+r)^-72

    f'(r) = -379525(1+r)^-2 -759050(1+r)^-3 -1138575(1+r)^-4 -1518100(1+r)^-5 -1897625(1+r)^-6 -2277150(1+r)^-7 -2656675(1+r)^-8 -3036200(1+r)^-9 -3415725(1+r)^-10 -3795250(1+r)^-11 -4174775(1+r)^-12 -4554300(1+r)^-13 -5477691.375(1+r)^-14 -5899052.25(1+r)^-15 -6320413.125(1+r)^-16 -6741774(1+r)^-17 -7163134.875(1+r)^-18 -7584495.75(1+r)^-19 -8005856.625(1+r)^-20 -8427217.5(1+r)^-21 -8848578.375(1+r)^-22 -9269939.25(1+r)^-23 -9691300.125(1+r)^-24 -10112661(1+r)^-25 -11395130.9075(1+r)^-26 -11850936.1438(1+r)^-27 -12306741.3801(1+r)^-28 -12762546.6164(1+r)^-29 -13218351.8527(1+r)^-30 -13674157.089(1+r)^-31 -14129962.3253(1+r)^-32 -14585767.5616(1+r)^-33 -15041572.7979(1+r)^-34 -15497378.0342(1+r)^-35 -15953183.2705(1+r)^-36 -16408988.5068(1+r)^-37 -18243095.3396(1+r)^-38 -18736151.9704(1+r)^-39 -19229208.6012(1+r)^-40 -19722265.232(1+r)^-41 -20215321.8628(1+r)^-42 -20708378.4936(1+r)^-43 -21201435.1244(1+r)^-44 -21694491.7552(1+r)^-45 -22187548.386(1+r)^-46 -22680605.0168(1+r)^-47 -23173661.6476(1+r)^-48 -23666718.2784(1+r)^-49 -26133818.0348(1+r)^-50 -26667161.26(1+r)^-51 -27200504.4852(1+r)^-52 -27733847.7104(1+r)^-53 -28267190.9356(1+r)^-54 -28800534.1608(1+r)^-55 -29333877.386(1+r)^-56 -29867220.6112(1+r)^-57 -30400563.8364(1+r)^-58 -30933907.0616(1+r)^-59 -31467250.2868(1+r)^-60 -32000593.512(1+r)^-61 -35191613.1876(1+r)^-62 -35768524.8792(1+r)^-63 -36345436.5708(1+r)^-64 -36922348.2624(1+r)^-65 -37499259.954(1+r)^-66 -38076171.6456(1+r)^-67 -38653083.3372(1+r)^-68 -39229995.0288(1+r)^-69 -39806906.7204(1+r)^-70 -40383818.412(1+r)^-71 -40960730.1036(1+r)^-72 -41537641.7952(1+r)^-73

    r0 = 0.05
    f(r0) = -54702927.4746
    f'(r0) = -160814482.422
    r1 = 0.05 - -54702927.4746/-160814482.422 = -0.29016169844
    Error Bound = -0.29016169844 - 0.05 = 0.340162 > 0.000001

    r1 = -0.29016169844
    f(r1) = 1.03382020609E+17
    f'(r1) = -1.01321372814E+19
    r2 = -0.29016169844 - 1.03382020609E+17/-1.01321372814E+19 = -0.279958321035
    Error Bound = -0.279958321035 - -0.29016169844 = 0.010203 > 0.000001

    r2 = -0.279958321035
    f(r2) = 3.83369043354E+16
    f'(r2) = -3.69750379273E+18
    r3 = -0.279958321035 - 3.83369043354E+16/-3.69750379273E+18 = -0.269590000545
    Error Bound = -0.269590000545 - -0.279958321035 = 0.010368 > 0.000001

    r3 = -0.269590000545
    f(r3) = 1.42176902088E+16
    f'(r3) = -1.34919279905E+18
    r4 = -0.269590000545 - 1.42176902088E+16/-1.34919279905E+18 = -0.259052077263
    Error Bound = -0.259052077263 - -0.269590000545 = 0.010538 > 0.000001

    r4 = -0.259052077263
    f(r4) = 5.2733499682E+15
    f'(r4) = -4.92256259263E+17
    r5 = -0.259052077263 - 5.2733499682E+15/-4.92256259263E+17 = -0.248339465957
    Error Bound = -0.248339465957 - -0.259052077263 = 0.010713 > 0.000001

    r5 = -0.248339465957
    f(r5) = 1.95612395306E+15
    f'(r5) = -1.79577992097E+17
    r6 = -0.248339465957 - 1.95612395306E+15/-1.79577992097E+17 = -0.237446572401
    Error Bound = -0.237446572401 - -0.248339465957 = 0.010893 > 0.000001

    r6 = -0.237446572401
    f(r6) = 7.25715669102E+14
    f'(r6) = -6.55014346502E+16
    r7 = -0.237446572401 - 7.25715669102E+14/-6.55014346502E+16 = -0.226367186537
    Error Bound = -0.226367186537 - -0.237446572401 = 0.011079 > 0.000001

    r7 = -0.226367186537
    f(r7) = 2.69281769819E+14
    f'(r7) = -2.38876545341E+16
    r8 = -0.226367186537 - 2.69281769819E+14/-2.38876545341E+16 = -0.21509434393
    Error Bound = -0.21509434393 - -0.226367186537 = 0.011273 > 0.000001

    r8 = -0.21509434393
    f(r8) = 9.9937875405E+13
    f'(r8) = -8.70978996346E+15
    r9 = -0.21509434393 - 9.9937875405E+13/-8.70978996346E+15 = -0.203620143539
    Error Bound = -0.203620143539 - -0.21509434393 = 0.011474 > 0.000001

    r9 = -0.203620143539
    f(r9) = 3.70980896373E+13
    f'(r9) = -3.17494533206E+15
    r10 = -0.203620143539 - 3.70980896373E+13/-3.17494533206E+15 = -0.191935504669
    Error Bound = -0.191935504669 - -0.203620143539 = 0.011685 > 0.000001

    r10 = -0.191935504669
    f(r10) = 1.37749830768E+13
    f'(r10) = -1.15701069862E+15
    r11 = -0.191935504669 - 1.37749830768E+13/-1.15701069862E+15 = -0.180029838547
    Error Bound = -0.180029838547 - -0.191935504669 = 0.011906 > 0.000001

    r11 = -0.180029838547
    f(r11) = 5.11651471693E+12
    f'(r11) = -4.21485654074E+14
    r12 = -0.180029838547 - 5.11651471693E+12/-4.21485654074E+14 = -0.167890600432
    Error Bound = -0.167890600432 - -0.180029838547 = 0.012139 > 0.000001

    r12 = -0.167890600432
    f(r12) = 1.9012279051E+12
    f'(r12) = -1.53474323454E+14
    r13 = -0.167890600432 - 1.9012279051E+12/-1.53474323454E+14 = -0.155502678711
    Error Bound = -0.155502678711 - -0.167890600432 = 0.012388 > 0.000001

    r13 = -0.155502678711
    f(r13) = 706828481029
    f'(r13) = -5.58532512525E+13
    r14 = -0.155502678711 - 706828481029/-5.58532512525E+13 = -0.142847578691
    Error Bound = -0.142847578691 - -0.155502678711 = 0.012655 > 0.000001

    r14 = -0.142847578691
    f(r14) = 262947328781
    f'(r14) = -2.031238696E+13
    r15 = -0.142847578691 - 262947328781/-2.031238696E+13 = -0.129902407388
    Error Bound = -0.129902407388 - -0.142847578691 = 0.012945 > 0.000001

    r15 = -0.129902407388
    f(r15) = 97895747849.3
    f'(r15) = -7.38082155089E+12
    r16 = -0.129902407388 - 97895747849.3/-7.38082155089E+12 = -0.116638877417
    Error Bound = -0.116638877417 - -0.129902407388 = 0.013264 > 0.000001

    r16 = -0.116638877417
    f(r16) = 36480582871.5
    f'(r16) = -2.67932129854E+12
    r17 = -0.116638877417 - 36480582871.5/-2.67932129854E+12 = -0.10302327152
    Error Bound = -0.10302327152 - -0.116638877417 = 0.013616 > 0.000001

    r17 = -0.10302327152
    f(r17) = 13607250119.7
    f'(r17) = -971758341137
    r18 = -0.10302327152 - 13607250119.7/-971758341137 = -0.0890205616452
    Error Bound = -0.0890205616452 - -0.10302327152 = 0.014003 > 0.000001

    r18 = -0.0890205616452
    f(r18) = 5077838849.31
    f'(r18) = -352430820909
    r19 = -0.0890205616452 - 5077838849.31/-352430820909 = -0.0746125174333
    Error Bound = -0.0746125174333 - -0.0890205616452 = 0.014408 > 0.000001

    r19 = -0.0746125174333
    f(r19) = 1891823183.58
    f'(r19) = -128219849219
    r20 = -0.0746125174333 - 1891823183.58/-128219849219 = -0.0598579907737
    Error Bound = -0.0598579907737 - -0.0746125174333 = 0.014755 > 0.000001

    r20 = -0.0598579907737
    f(r20) = 698933654.555
    f'(r20) = -47253758678.9
    r21 = -0.0598579907737 - 698933654.555/-47253758678.9 = -0.0450669207277
    Error Bound = -0.0450669207277 - -0.0598579907737 = 0.014791 > 0.000001

    r21 = -0.0450669207277
    f(r21) = 251027058.705
    f'(r21) = -18117949479.3
    r22 = -0.0450669207277 - 251027058.705/-18117949479.3 = -0.0312117623947
    Error Bound = -0.0312117623947 - -0.0450669207277 = 0.013855 > 0.000001

    r22 = -0.0312117623947
    f(r22) = 82892244.8584
    f'(r22) = -7706864624.03
    r23 = -0.0312117623947 - 82892244.8584/-7706864624.03 = -0.0204561245443
    Error Bound = -0.0204561245443 - -0.0312117623947 = 0.010756 > 0.000001

    r23 = -0.0204561245443
    f(r23) = 21575968.2985
    f'(r23) = -4100121356.61
    r24 = -0.0204561245443 - 21575968.2985/-4100121356.61 = -0.015193849011
    Error Bound = -0.015193849011 - -0.0204561245443 = 0.005262 > 0.000001

    r24 = -0.015193849011
    f(r24) = 2924938.5849
    f'(r24) = -3045245956.62
    r25 = -0.015193849011 - 2924938.5849/-3045245956.62 = -0.0142333556299
    Error Bound = -0.0142333556299 - -0.015193849011 = 0.00096 > 0.000001

    r25 = -0.0142333556299
    f(r25) = 76848.8809
    f'(r25) = -2886769022.1
    r26 = -0.0142333556299 - 76848.8809/-2886769022.1 = -0.0142067345597
    Error Bound = -0.0142067345597 - -0.0142333556299 = 2.7E-5 > 0.000001

    r26 = -0.0142067345597
    f(r26) = 56.7441
    f'(r26) = -2882507070.24
    r27 = -0.0142067345597 - 56.7441/-2882507070.24 = -0.014206714874
    Error Bound = -0.014206714874 - -0.0142067345597 = 0 < 0.000001

    IRR = r27 = -0.014206714874 or -1.42%

    ---------------------------------------------------------------------------------------------

    IRR = -192.77%
    How internal rate of return was calculated

    f(r) = -62881732(1+r)^0 +379525(1+r)^-1 +379525(1+r)^-2 +379525(1+r)^-3 +379525(1+r)^-4 +379525(1+r)^-5 +379525(1+r)^-6 +379525(1+r)^-7 +379525(1+r)^-8 +379525(1+r)^-9 +379525(1+r)^-10 +379525(1+r)^-11 +379525(1+r)^-12 +421360.875(1+r)^-13 +421360.875(1+r)^-14 +421360.875(1+r)^-15 +421360.875(1+r)^-16 +421360.875(1+r)^-17 +421360.875(1+r)^-18 +421360.875(1+r)^-19 +421360.875(1+r)^-20 +421360.875(1+r)^-21 +421360.875(1+r)^-22 +421360.875(1+r)^-23 +421360.875(1+r)^-24 +455805.2363(1+r)^-25 +455805.2363(1+r)^-26 +455805.2363(1+r)^-27 +455805.2363(1+r)^-28 +455805.2363(1+r)^-29 +455805.2363(1+r)^-30 +455805.2363(1+r)^-31 +455805.2363(1+r)^-32 +455805.2363(1+r)^-33 +455805.2363(1+r)^-34 +455805.2363(1+r)^-35 +455805.2363(1+r)^-36 +493056.6308(1+r)^-37 +493056.6308(1+r)^-38 +493056.6308(1+r)^-39 +493056.6308(1+r)^-40 +493056.6308(1+r)^-41 +493056.6308(1+r)^-42 +493056.6308(1+r)^-43 +493056.6308(1+r)^-44 +493056.6308(1+r)^-45 +493056.6308(1+r)^-46 +493056.6308(1+r)^-47 +493056.6308(1+r)^-48 +533343.2252(1+r)^-49 +533343.2252(1+r)^-50 +533343.2252(1+r)^-51 +533343.2252(1+r)^-52 +533343.2252(1+r)^-53 +533343.2252(1+r)^-54 +533343.2252(1+r)^-55 +533343.2252(1+r)^-56 +533343.2252(1+r)^-57 +533343.2252(1+r)^-58 +533343.2252(1+r)^-59 +533343.2252(1+r)^-60 +576911.6916(1+r)^-61 +576911.6916(1+r)^-62 +576911.6916(1+r)^-63 +576911.6916(1+r)^-64 +576911.6916(1+r)^-65 +576911.6916(1+r)^-66 +576911.6916(1+r)^-67 +576911.6916(1+r)^-68 +576911.6916(1+r)^-69 +576911.6916(1+r)^-70 +576911.6916(1+r)^-71 +576911.6916(1+r)^-72

    f'(r) = -379525(1+r)^-2 -759050(1+r)^-3 -1138575(1+r)^-4 -1518100(1+r)^-5 -1897625(1+r)^-6 -2277150(1+r)^-7 -2656675(1+r)^-8 -3036200(1+r)^-9 -3415725(1+r)^-10 -3795250(1+r)^-11 -4174775(1+r)^-12 -4554300(1+r)^-13 -5477691.375(1+r)^-14 -5899052.25(1+r)^-15 -6320413.125(1+r)^-16 -6741774(1+r)^-17 -7163134.875(1+r)^-18 -7584495.75(1+r)^-19 -8005856.625(1+r)^-20 -8427217.5(1+r)^-21 -8848578.375(1+r)^-22 -9269939.25(1+r)^-23 -9691300.125(1+r)^-24 -10112661(1+r)^-25 -11395130.9075(1+r)^-26 -11850936.1438(1+r)^-27 -12306741.3801(1+r)^-28 -12762546.6164(1+r)^-29 -13218351.8527(1+r)^-30 -13674157.089(1+r)^-31 -14129962.3253(1+r)^-32 -14585767.5616(1+r)^-33 -15041572.7979(1+r)^-34 -15497378.0342(1+r)^-35 -15953183.2705(1+r)^-36 -16408988.5068(1+r)^-37 -18243095.3396(1+r)^-38 -18736151.9704(1+r)^-39 -19229208.6012(1+r)^-40 -19722265.232(1+r)^-41 -20215321.8628(1+r)^-42 -20708378.4936(1+r)^-43 -21201435.1244(1+r)^-44 -21694491.7552(1+r)^-45 -22187548.386(1+r)^-46 -22680605.0168(1+r)^-47 -23173661.6476(1+r)^-48 -23666718.2784(1+r)^-49 -26133818.0348(1+r)^-50 -26667161.26(1+r)^-51 -27200504.4852(1+r)^-52 -27733847.7104(1+r)^-53 -28267190.9356(1+r)^-54 -28800534.1608(1+r)^-55 -29333877.386(1+r)^-56 -29867220.6112(1+r)^-57 -30400563.8364(1+r)^-58 -30933907.0616(1+r)^-59 -31467250.2868(1+r)^-60 -32000593.512(1+r)^-61 -35191613.1876(1+r)^-62 -35768524.8792(1+r)^-63 -36345436.5708(1+r)^-64 -36922348.2624(1+r)^-65 -37499259.954(1+r)^-66 -38076171.6456(1+r)^-67 -38653083.3372(1+r)^-68 -39229995.0288(1+r)^-69 -39806906.7204(1+r)^-70 -40383818.412(1+r)^-71 -40960730.1036(1+r)^-72 -41537641.7952(1+r)^-73

    r0 = -1.5
    f(r0) = 1.81622546242E+27
    f'(r0) = 2.62748087622E+29
    r1 = -1.5 - 1.81622546242E+27/2.62748087622E+29 = -1.50691242124
    Error Bound = -1.50691242124 - -1.5 = 0.006912 > 0.000001

    r1 = -1.50691242124
    f(r1) = 6.72729843342E+26
    f'(r1) = 9.59988803439E+28
    r2 = -1.50691242124 - 6.72729843342E+26/9.59988803439E+28 = -1.51392010551
    Error Bound = -1.51392010551 - -1.50691242124 = 0.007008 > 0.000001

    r2 = -1.51392010551
    f(r2) = 2.49179001395E+26
    f'(r2) = 3.50746189871E+28
    r3 = -1.51392010551 - 2.49179001395E+26/3.50746189871E+28 = -1.52102435948
    Error Bound = -1.52102435948 - -1.51392010551 = 0.007104 > 0.000001

    r3 = -1.52102435948
    f(r3) = 9.22958123878E+25
    f'(r3) = 1.28150395429E+28
    r4 = -1.52102435948 - 9.22958123878E+25/1.28150395429E+28 = -1.52822650756
    Error Bound = -1.52822650756 - -1.52102435948 = 0.007202 > 0.000001

    r4 = -1.52822650756
    f(r4) = 3.41863202625E+25
    f'(r4) = 4.6821695742E+27
    r5 = -1.52822650756 - 3.41863202625E+25/4.6821695742E+27 = -1.53552789204
    Error Bound = -1.53552789204 - -1.52822650756 = 0.007301 > 0.000001

    r5 = -1.53552789204
    f(r5) = 1.26625891398E+25
    f'(r5) = 1.71070266323E+27
    r6 = -1.53552789204 - 1.26625891398E+25/1.71070266323E+27 = -1.54292987335
    Error Bound = -1.54292987335 - -1.53552789204 = 0.007402 > 0.000001

    r6 = -1.54292987335
    f(r6) = 4.69021192769E+24
    f'(r6) = 6.25031832775E+26
    r7 = -1.54292987335 - 4.69021192769E+24/6.25031832775E+26 = -1.55043383024
    Error Bound = -1.55043383024 - -1.54292987335 = 0.007504 > 0.000001

    r7 = -1.55043383024
    f(r7) = 1.73724952939E+24
    f'(r7) = 2.2836521994E+26
    r8 = -1.55043383024 - 1.73724952939E+24/2.2836521994E+26 = -1.55804115998
    Error Bound = -1.55804115998 - -1.55043383024 = 0.007607 > 0.000001

    r8 = -1.55804115998
    f(r8) = 6.43475053111E+23
    f'(r8) = 8.34368723607E+25
    r9 = -1.55804115998 - 6.43475053111E+23/8.34368723607E+25 = -1.56575327856
    Error Bound = -1.56575327856 - -1.55804115998 = 0.007712 > 0.000001

    r9 = -1.56575327856
    f(r9) = 2.3834222609E+23
    f'(r9) = 3.04850078897E+25
    r10 = -1.56575327856 - 2.3834222609E+23/3.04850078897E+25 = -1.57357162084
    Error Bound = -1.57357162084 - -1.56575327856 = 0.007818 > 0.000001

    r10 = -1.57357162084
    f(r10) = 8.82815644677E+22
    f'(r10) = 1.11381961469E+25
    r11 = -1.57357162084 - 8.82815644677E+22/1.11381961469E+25 = -1.58149764075
    Error Bound = -1.58149764075 - -1.57357162084 = 0.007926 > 0.000001

    r11 = -1.58149764075
    f(r11) = 3.26993250337E+22
    f'(r11) = 4.06952463399E+24
    r12 = -1.58149764075 - 3.26993250337E+22/4.06952463399E+24 = -1.58953281143
    Error Bound = -1.58953281143 - -1.58149764075 = 0.008035 > 0.000001

    r12 = -1.58953281143
    f(r12) = 1.21117605407E+22
    f'(r12) = 1.48686928692E+24
    r13 = -1.58953281143 - 1.21117605407E+22/1.48686928692E+24 = -1.59767862536
    Error Bound = -1.59767862536 - -1.58953281143 = 0.008146 > 0.000001

    r13 = -1.59767862536
    f(r13) = 4.48616727534E+21
    f'(r13) = 5.43253096794E+23
    r14 = -1.59767862536 - 4.48616727534E+21/5.43253096794E+23 = -1.60593659444
    Error Bound = -1.60593659444 - -1.59767862536 = 0.008258 > 0.000001

    r14 = -1.60593659444
    f(r14) = 1.66166443662E+21
    f'(r14) = 1.98486954461E+23
    r15 = -1.60593659444 - 1.66166443662E+21/1.98486954461E+23 = -1.6143082501
    Error Bound = -1.6143082501 - -1.60593659444 = 0.008372 > 0.000001

    r15 = -1.6143082501
    f(r15) = 6.15475589218E+20
    f'(r15) = 7.2520717802E+22
    r16 = -1.6143082501 - 6.15475589218E+20/7.2520717802E+22 = -1.62279514333
    Error Bound = -1.62279514333 - -1.6143082501 = 0.008487 > 0.000001

    r16 = -1.62279514333
    f(r16) = 2.27970132395E+20
    f'(r16) = 2.64967510683E+22
    r17 = -1.62279514333 - 2.27970132395E+20/2.64967510683E+22 = -1.63139884466
    Error Bound = -1.63139884466 - -1.62279514333 = 0.008604 > 0.000001

    r17 = -1.63139884466
    f(r17) = 8.44393030284E+19
    f'(r17) = 9.68107549631E+21
    r18 = -1.63139884466 - 8.44393030284E+19/9.68107549631E+21 = -1.64012094409
    Error Bound = -1.64012094409 - -1.63139884466 = 0.008722 > 0.000001

    r18 = -1.64012094409
    f(r18) = 3.12759744194E+19
    f'(r18) = 3.53716313619E+21
    r19 = -1.64012094409 - 3.12759744194E+19/3.53716313619E+21 = -1.64896305095
    Error Bound = -1.64896305095 - -1.64012094409 = 0.008842 > 0.000001

    r19 = -1.64896305095
    f(r19) = 1.15844793854E+19
    f'(r19) = 1.292370803E+21
    r20 = -1.64896305095 - 1.15844793854E+19/1.292370803E+21 = -1.65792679367
    Error Bound = -1.65792679367 - -1.64896305095 = 0.008964 > 0.000001

    r20 = -1.65792679367
    f(r20) = 4.29083274097E+18
    f'(r20) = 4.72193304438E+20
    r21 = -1.65792679367 - 4.29083274097E+18/4.72193304438E+20 = -1.66701381947
    Error Bound = -1.66701381947 - -1.65792679367 = 0.009087 > 0.000001

    r21 = -1.66701381947
    f(r21) = 1.58930028178E+18
    f'(r21) = 1.72525477968E+20
    r22 = -1.66701381947 - 1.58930028178E+18/1.72525477968E+20 = -1.67622579385
    Error Bound = -1.67622579385 - -1.66701381947 = 0.009212 > 0.000001

    r22 = -1.67622579385
    f(r22) = 5.88666803165E+17
    f'(r22) = 6.30358318858E+19
    r23 = -1.67622579385 - 5.88666803165E+17/6.30358318858E+19 = -1.68556439993
    Error Bound = -1.68556439993 - -1.67622579385 = 0.009339 > 0.000001

    r23 = -1.68556439993
    f(r23) = 2.1803801561E+17
    f'(r23) = 2.30315253082E+19
    r24 = -1.68556439993 - 2.1803801561E+17/2.30315253082E+19 = -1.69503133765
    Error Bound = -1.69503133765 - -1.68556439993 = 0.009467 > 0.000001

    r24 = -1.69503133765
    f(r24) = 8.07595412346E+16
    f'(r24) = 8.41509514856E+18
    r25 = -1.69503133765 - 8.07595412346E+16/8.41509514856E+18 = -1.70462832257
    Error Bound = -1.70462832257 - -1.69503133765 = 0.009597 > 0.000001

    r25 = -1.70462832257
    f(r25) = 2.99126051633E+16
    f'(r25) = 3.0746569393E+18
    r26 = -1.70462832257 - 2.99126051633E+16/3.0746569393E+18 = -1.71435708443
    Error Bound = -1.71435708443 - -1.70462832257 = 0.009729 > 0.000001

    r26 = -1.71435708443
    f(r26) = 1.10793222769E+16
    f'(r26) = 1.12340365547E+18
    r27 = -1.71435708443 - 1.10793222769E+16/1.12340365547E+18 = -1.72421936521
    Error Bound = -1.72421936521 - -1.71435708443 = 0.009862 > 0.000001

    r27 = -1.72421936521
    f(r27) = 4.10365135464E+15
    f'(r27) = 4.10465642291E+17
    r28 = -1.72421936521 - 4.10365135464E+15/4.10465642291E+17 = -1.7342169166
    Error Bound = -1.7342169166 - -1.72421936521 = 0.009998 > 0.000001

    r28 = -1.7342169166
    f(r28) = 1.51993740743E+15
    f'(r28) = 1.49975370317E+17
    r29 = -1.7342169166 - 1.51993740743E+15/1.49975370317E+17 = -1.74435149673
    Error Bound = -1.74435149673 - -1.7342169166 = 0.010135 > 0.000001

    r29 = -1.74435149673
    f(r29) = 5.62961304215E+14
    f'(r29) = 5.47981198552E+16
    r30 = -1.74435149673 - 5.62961304215E+14/5.47981198552E+16 = -1.7546248657
    Error Bound = -1.7546248657 - -1.74435149673 = 0.010273 > 0.000001

    r30 = -1.7546248657
    f(r30) = 2.08510764696E+14
    f'(r30) = 2.00223246823E+16
    r31 = -1.7546248657 - 2.08510764696E+14/2.00223246823E+16 = -1.76503877957
    Error Bound = -1.76503877957 - -1.7546248657 = 0.010414 > 0.000001

    r31 = -1.76503877957
    f(r31) = 7.72280149707E+13
    f'(r31) = 7.31589021275E+15
    r32 = -1.76503877957 - 7.72280149707E+13/7.31589021275E+15 = -1.77559498158
    Error Bound = -1.77559498158 - -1.76503877957 = 0.010556 > 0.000001

    r32 = -1.77559498158
    f(r32) = 2.86033468073E+13
    f'(r32) = 2.67315828479E+15
    r33 = -1.77559498158 - 2.86033468073E+13/2.67315828479E+15 = -1.78629518851
    Error Bound = -1.78629518851 - -1.77559498158 = 0.0107 > 0.000001

    r33 = -1.78629518851
    f(r33) = 1.05938341774E+13
    f'(r33) = 9.7676129277E+14
    r34 = -1.78629518851 - 1.05938341774E+13/9.7676129277E+14 = -1.79714106688
    Error Bound = -1.79714106688 - -1.78629518851 = 0.010846 > 0.000001

    r34 = -1.79714106688
    f(r34) = 3.92357383994E+12
    f'(r34) = 3.56911794358E+14
    r35 = -1.79714106688 - 3.92357383994E+12/3.56911794358E+14 = -1.80813418591
    Error Bound = -1.80813418591 - -1.79714106688 = 0.010993 > 0.000001

    r35 = -1.80813418591
    f(r35) = 1.45311234005E+12
    f'(r35) = 1.3042074143E+14
    r36 = -1.80813418591 - 1.45311234005E+12/1.3042074143E+14 = -1.81927591325
    Error Bound = -1.81927591325 - -1.80813418591 = 0.011142 > 0.000001

    r36 = -1.81927591325
    f(r36) = 538143002685
    f'(r36) = 4.76601810846E+13
    r37 = -1.81927591325 - 538143002685/4.76601810846E+13 = -1.83056716289
    Error Bound = -1.83056716289 - -1.81927591325 = 0.011291 > 0.000001

    r37 = -1.83056716289
    f(r37) = 199278262600
    f'(r37) = 1.74185315975E+13
    r38 = -1.83056716289 - 199278262600/1.74185315975E+13 = -1.84200775198
    Error Bound = -1.84200775198 - -1.83056716289 = 0.011441 > 0.000001

    r38 = -1.84200775198
    f(r38) = 73780704457.2
    f'(r38) = 6.36756584407E+12
    r39 = -1.84200775198 - 73780704457.2/6.36756584407E+12 = -1.85359470786
    Error Bound = -1.85359470786 - -1.84200775198 = 0.011587 > 0.000001

    r39 = -1.85359470786
    f(r39) = 27304567935.4
    f'(r39) = 2.32913801254E+12
    r40 = -1.85359470786 - 27304567935.4/2.32913801254E+12 = -1.8653177435
    Error Bound = -1.8653177435 - -1.85359470786 = 0.011723 > 0.000001

    r40 = -1.8653177435
    f(r40) = 10093575090.8
    f'(r40) = 853263769349
    r41 = -1.8653177435 - 10093575090.8/853263769349 = -1.87714711614
    Error Bound = -1.87714711614 - -1.8653177435 = 0.011829 > 0.000001

    r41 = -1.87714711614
    f(r41) = 3720419914.78
    f'(r41) = 313847691418
    r42 = -1.87714711614 - 3720419914.78/313847691418 = -1.88900133721
    Error Bound = -1.88900133721 - -1.87714711614 = 0.011854 > 0.000001

    r42 = -1.88900133721
    f(r42) = 1360757157.41
    f'(r42) = 116673561096
    r43 = -1.88900133721 - 1360757157.41/116673561096 = -1.90066428076
    Error Bound = -1.90066428076 - -1.88900133721 = 0.011663 > 0.000001

    r43 = -1.90066428076
    f(r43) = 487468400.538
    f'(r43) = 44600236866.1
    r44 = -1.90066428076 - 487468400.538/44600236866.1 = -1.91159400748
    Error Bound = -1.91159400748 - -1.90066428076 = 0.01093 > 0.000001

    r44 = -1.91159400748
    f(r44) = 165062031.505
    f'(r44) = 18297801208.1
    r45 = -1.91159400748 - 165062031.505/18297801208.1 = -1.9206148745
    Error Bound = -1.9206148745 - -1.91159400748 = 0.009021 > 0.000001

    r45 = -1.9206148745
    f(r45) = 47887025.5891
    f'(r45) = 8832995635.16
    r46 = -1.9206148745 - 47887025.5891/8832995635.16 = -1.92603625447
    Error Bound = -1.92603625447 - -1.9206148745 = 0.005421 > 0.000001

    r46 = -1.92603625447
    f(r46) = 9058837.0471
    f'(r46) = 5718603608.64
    r47 = -1.92603625447 - 9058837.0471/5718603608.64 = -1.92762035396
    Error Bound = -1.92762035396 - -1.92603625447 = 0.001584 > 0.000001

    r47 = -1.92762035396
    f(r47) = 550264.2382
    f'(r47) = 5038380733.5
    r48 = -1.92762035396 - 550264.2382/5038380733.5 = -1.92772956846
    Error Bound = -1.92772956846 - -1.92762035396 = 0.000109 > 0.000001

    r48 = -1.92772956846
    f(r48) = 2393.4883
    f'(r48) = 4994614109.47
    r49 = -1.92772956846 - 2393.4883/4994614109.47 = -1.92773004767
    Error Bound = -1.92773004767 - -1.92772956846 = 0 < 0.000001

    IRR = r49 = -1.92773004767 or -192.77%

    Wednesday, May 29, 2013 3:18 AM
  • User1584858649 posted

    Hi, I'm having the same problem "Arguments are not valid" using the IIR function on VB (Visual Studio 2010, NetFramework 4.0)

    I thought probably the problem was the values, but using the same on excel (TIR function) it works.

    This is an examlpe:

    Dim TIR As Double
    Dim array(60) As Double

    array(0) = -10395.08
    array(1) = 257.77
    array(2) = 258
    array(3) = 258.25
    array(4) = 258.5
    array(5) = 258.74
    array(6) = 259.01
    array(7) = 259.26
    array(8) = 259.53
    array(9) = 259.78
    array(10) = 260.06
    array(11) = 260.33
    array(12) = 260.61
    array(13) = 260.89
    array(14) = 261.18
    array(15) = 261.48
    array(16) = 261.77
    array(17) = 262.07
    array(18) = 262.37
    array(19) = 262.68
    array(20) = 263
    array(21) = 263.32
    array(22) = 263.64
    array(23) = 263.97
    array(24) = 264.3
    array(25) = 264.64
    array(26) = 265
    array(27) = 265.34
    array(28) = 265.7
    array(29) = 266.06
    array(30) = 266.43
    array(31) = 266.8
    array(32) = 267.18
    array(33) = 267.56
    array(34) = 267.94
    array(35) = 268.34
    array(36) = 268.75
    array(37) = 269.15
    array(38) = 269.57
    array(39) = 269.99
    array(40) = 270.41
    array(41) = 270.85
    array(42) = 271.29
    array(43) = 271.74
    array(44) = 272.19
    array(45) = 272.65
    array(46) = 273.12
    array(47) = 273.59
    array(48) = 274.08
    array(49) = 274.56
    array(50) = 275.06
    array(51) = 275.58
    array(52) = 276.08
    array(53) = 276.6
    array(54) = 277.14
    array(55) = 277.67
    array(56) = 278.21
    array(57) = 278.77
    array(58) = 279.33
    array(59) = 279.9
    array(60) = 280.49

    TIR = IRR(array)

    I found this old post, have you finally fix this error?

    Thanks in advance.

    I did run your numbers in Excel 2007 and it reported a #NUM! error for the rate. Yet when I used a 3rd party Excel IRR function I was able to get the internal rate of return of 1.527%

    You can confirm the results of the IRR calculation from this web at http://njinstruments.com/

    IRR = 1.53%

    How internal rate of return was calculated

    f(r) = -10395.08(1+r)^0 +257.77(1+r)^-1 +258(1+r)^-2 +258.25(1+r)^-3 +258.5(1+r)^-4 +258.74(1+r)^-5 +259.01(1+r)^-6 +259.26(1+r)^-7 +259.53(1+r)^-8 +259.78(1+r)^-9 +260.06(1+r)^-10 +260.33(1+r)^-11 +260.61(1+r)^-12 +260.89(1+r)^-13 +261.18(1+r)^-14 +261.48(1+r)^-15 +261.77(1+r)^-16 +262.07(1+r)^-17 +262.37(1+r)^-18 +262.68(1+r)^-19 +263(1+r)^-20 +263.32(1+r)^-21 +263.64(1+r)^-22 +263.97(1+r)^-23 +264.3(1+r)^-24 +264.64(1+r)^-25 +265(1+r)^-26 +265.34(1+r)^-27 +265.7(1+r)^-28 +266.06(1+r)^-29 +266.43(1+r)^-30 +266.8(1+r)^-31 +267.18(1+r)^-32 +267.56(1+r)^-33 +267.94(1+r)^-34 +268.34(1+r)^-35 +268.75(1+r)^-36 +269.15(1+r)^-37 +269.57(1+r)^-38 +269.99(1+r)^-39 +270.41(1+r)^-40 +270.85(1+r)^-41 +271.29(1+r)^-42 +271.74(1+r)^-43 +272.19(1+r)^-44 +272.65(1+r)^-45 +273.12(1+r)^-46 +273.59(1+r)^-47 +274.08(1+r)^-48 +274.56(1+r)^-49 +275.06(1+r)^-50 +275.58(1+r)^-51 +276.08(1+r)^-52 +276.6(1+r)^-53 +277.14(1+r)^-54 +277.67(1+r)^-55 +278.21(1+r)^-56 +278.77(1+r)^-57 +279.33(1+r)^-58 +279.9(1+r)^-59 +280.49(1+r)^-60

    f'(r) = -257.77(1+r)^-2 -516(1+r)^-3 -774.75(1+r)^-4 -1034(1+r)^-5 -1293.7(1+r)^-6 -1554.06(1+r)^-7 -1814.82(1+r)^-8 -2076.24(1+r)^-9 -2338.02(1+r)^-10 -2600.6(1+r)^-11 -2863.63(1+r)^-12 -3127.32(1+r)^-13 -3391.57(1+r)^-14 -3656.52(1+r)^-15 -3922.2(1+r)^-16 -4188.32(1+r)^-17 -4455.19(1+r)^-18 -4722.66(1+r)^-19 -4990.92(1+r)^-20 -5260(1+r)^-21 -5529.72(1+r)^-22 -5800.08(1+r)^-23 -6071.31(1+r)^-24 -6343.2(1+r)^-25 -6616(1+r)^-26 -6890(1+r)^-27 -7164.18(1+r)^-28 -7439.6(1+r)^-29 -7715.74(1+r)^-30 -7992.9(1+r)^-31 -8270.8(1+r)^-32 -8549.76(1+r)^-33 -8829.48(1+r)^-34 -9109.96(1+r)^-35 -9391.9(1+r)^-36 -9675(1+r)^-37 -9958.55(1+r)^-38 -10243.66(1+r)^-39 -10529.61(1+r)^-40 -10816.4(1+r)^-41 -11104.85(1+r)^-42 -11394.18(1+r)^-43 -11684.82(1+r)^-44 -11976.36(1+r)^-45 -12269.25(1+r)^-46 -12563.52(1+r)^-47 -12858.73(1+r)^-48 -13155.84(1+r)^-49 -13453.44(1+r)^-50 -13753(1+r)^-51 -14054.58(1+r)^-52 -14356.16(1+r)^-53 -14659.8(1+r)^-54 -14965.56(1+r)^-55 -15271.85(1+r)^-56 -15579.76(1+r)^-57 -15889.89(1+r)^-58 -16201.14(1+r)^-59 -16514.1(1+r)^-60 -16829.4(1+r)^-61

    r0 = 0.1
    f(r0) = -7798.6032
    f'(r0) = -25779.8138
    r1 = 0.1 - -7798.6032/-25779.8138 = -0.202508127172
    Error Bound = -0.202508127172 - 0.1 = 0.302508 > 0.000001

    r1 = -0.202508127172
    f(r1) = 1082766140.62
    f'(r1) = -76165903721.5
    r2 = -0.202508127172 - 1082766140.62/-76165903721.5 = -0.188292236757
    Error Bound = -0.188292236757 - -0.202508127172 = 0.014216 > 0.000001

    r2 = -0.188292236757
    f(r2) = 403117575.275
    f'(r2) = -27678526412.1
    r3 = -0.188292236757 - 403117575.275/-27678526412.1 = -0.173727965189
    Error Bound = -0.173727965189 - -0.188292236757 = 0.014564 > 0.000001

    r3 = -0.173727965189
    f(r3) = 150182155.58
    f'(r3) = -10050893136.3
    r4 = -0.173727965189 - 150182155.58/-10050893136.3 = -0.158785795021
    Error Bound = -0.158785795021 - -0.173727965189 = 0.014942 > 0.000001

    r4 = -0.158785795021
    f(r4) = 55999092.4633
    f'(r4) = -3646257759.4
    r5 = -0.158785795021 - 55999092.4633/-3646257759.4 = -0.143427831828
    Error Bound = -0.143427831828 - -0.158785795021 = 0.015358 > 0.000001

    r5 = -0.143427831828
    f(r5) = 20904420.9495
    f'(r5) = -1321104123.57
    r6 = -0.143427831828 - 20904420.9495/-1321104123.57 = -0.127604384927
    Error Bound = -0.127604384927 - -0.143427831828 = 0.015823 > 0.000001

    r6 = -0.127604384927
    f(r6) = 7815318.1939
    f'(r6) = -477858787.87
    r7 = -0.127604384927 - 7815318.1939/-477858787.87 = -0.111249515262
    Error Bound = -0.111249515262 - -0.127604384927 = 0.016355 > 0.000001

    r7 = -0.111249515262
    f(r7) = 2927475.9239
    f'(r7) = -172480907.736
    r8 = -0.111249515262 - 2927475.9239/-172480907.736 = -0.0942767617998
    Error Bound = -0.0942767617998 - -0.111249515262 = 0.016973 > 0.000001

    r8 = -0.0942767617998
    f(r8) = 1099078.7698
    f'(r8) = -62109199.8821
    r9 = -0.0942767617998 - 1099078.7698/-62109199.8821 = -0.0765808524683
    Error Bound = -0.0765808524683 - -0.0942767617998 = 0.017696 > 0.000001

    r9 = -0.0765808524683
    f(r9) = 413446.1721
    f'(r9) = -22330974.4747
    r10 = -0.0765808524683 - 413446.1721/-22330974.4747 = -0.0580663817905
    Error Bound = -0.0580663817905 - -0.0765808524683 = 0.018514 > 0.000001

    r10 = -0.0580663817905
    f(r10) = 155404.5776
    f'(r10) = -8053389.0946
    r11 = -0.0580663817905 - 155404.5776/-8053389.0946 = -0.0387695893689
    Error Bound = -0.0387695893689 - -0.0580663817905 = 0.019297 > 0.000001

    r11 = -0.0387695893689
    f(r11) = 57762.9691
    f'(r11) = -2958561.4249
    r12 = -0.0387695893689 - 57762.9691/-2958561.4249 = -0.0192455840102
    Error Bound = -0.0192455840102 - -0.0387695893689 = 0.019524 > 0.000001

    r12 = -0.0192455840102
    f(r12) = 20559.682
    f'(r12) = -1155493.0236
    r13 = -0.0192455840102 - 20559.682/-1155493.0236 = -0.00145258864751
    Error Bound = -0.00145258864751 - -0.0192455840102 = 0.017793 > 0.000001

    r13 = -0.00145258864751
    f(r13) = 6396.4434
    f'(r13) = -527395.9568
    r14 = -0.00145258864751 - 6396.4434/-527395.9568 = 0.0106757625124
    Error Bound = 0.0106757625124 - -0.00145258864751 = 0.012128 > 0.000001

    r14 = 0.0106757625124
    f(r14) = 1357.9017
    f'(r14) = -322676.8119
    r15 = 0.0106757625124 - 1357.9017/-322676.8119 = 0.0148840033239
    Error Bound = 0.0148840033239 - 0.0106757625124 = 0.004208 > 0.000001

    r15 = 0.0148840033239
    f(r15) = 104.6859
    f'(r15) = -274446.7934
    r16 = 0.0148840033239 - 104.6859/-274446.7934 = 0.015265446503
    Error Bound = 0.015265446503 - 0.0148840033239 = 0.000381 > 0.000001

    r16 = 0.015265446503
    f(r16) = 0.7532
    f'(r16) = -270508.7738
    r17 = 0.015265446503 - 0.7532/-270508.7738 = 0.0152682308647
    Error Bound = 0.0152682308647 - 0.015265446503 = 3.0E-6 > 0.000001

    r17 = 0.0152682308647
    f(r17) = 0
    f'(r17) = -270480.2735
    r18 = 0.0152682308647 - 0/-270480.2735 = 0.0152682310114
    Error Bound = 0.0152682310114 - 0.0152682308647 = 0 < 0.000001

    IRR = r18 = 0.0152682310114 or 1.53%

    Wednesday, May 29, 2013 3:32 AM
  • User1584858649 posted

    As it is a repeatable bug, I suggest that you report it to Microsoft at https://connect.microsoft.com/dashboard/?wa=wsignin1.0

    Please post a link to your report so that other experiencing the same problem may confirm your report.

    They "Microsoft" said in a post they won't fix the IRR errornuos function as it will break the rest of their code

    http://connect.microsoft.com/VisualStudio/feedback/details/781299/microsoft-visualbasic-financial-irr-doesnt-solve-for-irr-correctly-in-certain-cases-with-any-guess

    Wednesday, May 29, 2013 11:54 AM