Asked by:
Microsoft.VisualBasic; IRR function

Question
-
User1637720093 posted
Hi I'm coding in c# and I'm usiing the IIR function of Microsoft.VisualBasic.
I need values for 6 years that's 72months
if (i <= 72)
{
values[i] += C158_Calc;
}
B162_Calc = Financial.IRR(ref values, 0.1) * 12;
row9["Month1"] = String.Format("{0:#,###,###,###.##}", B162_Calc);
this gives me this error:
Arguments are not valid.
Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code.
Exception Details: System.ArgumentException: Arguments are not valid.
but if I say up to 10months it works, more than that not.
Any help please.
Tuesday, June 8, 2010 4:59 AM
All replies
-
User-837620913 posted
I can't tell if one of your values is negative. That is a key point. The other is IRR tries 20 times to get an answer, and if it can't get it by then it quits (in the MSDN documentation).
See this thread:
Tuesday, June 8, 2010 7:39 AM -
User1637720093 posted
These are my values:
- values {Dimensions:[73]} double[]
[0] -62881732.0 double
[1] 379525.0 double
[2] 379525.0 double
[3] 379525.0 double
[4] 379525.0 double
[5] 379525.0 double
[6] 379525.0 double
[7] 379525.0 double
[8] 379525.0 double
[9] 379525.0 double
[10] 379525.0 double
[11] 379525.0 double
[12] 379525.0 double
[13] 421360.875 double
[14] 421360.875 double
[15] 421360.875 double
[16] 421360.875 double
[17] 421360.875 double
[18] 421360.875 double
[19] 421360.875 double
[20] 421360.875 double
[21] 421360.875 double
[22] 421360.875 double
[23] 421360.875 double
[24] 421360.875 double
[25] 455805.23625 double
[26] 455805.23625 double
[27] 455805.23625 double
[28] 455805.23625 double
[29] 455805.23625 double
[30] 455805.23625 double
[31] 455805.23625 double
[32] 455805.23625 double
[33] 455805.23625 double
[34] 455805.23625 double
[35] 455805.23625 double
[36] 455805.23625 double
[37] 493056.6307875 double
[38] 493056.6307875 double
[39] 493056.6307875 double
[40] 493056.6307875 double
[41] 493056.6307875 double
[42] 493056.6307875 double
[43] 493056.6307875 double
[44] 493056.6307875 double
[45] 493056.6307875 double
[46] 493056.6307875 double
[47] 493056.6307875 double
[48] 493056.6307875 double
[49] 533343.225182625 double
[50] 533343.225182625 double
[51] 533343.225182625 double
[52] 533343.225182625 double
[53] 533343.225182625 double
[54] 533343.225182625 double
[55] 533343.225182625 double
[56] 533343.225182625 double
[57] 533343.225182625 double
[58] 533343.225182625 double
[59] 533343.225182625 double
[60] 533343.225182625 double
[61] 576911.69160460879 double
[62] 576911.69160460879 double
[63] 576911.69160460879 double
[64] 576911.69160460879 double
[65] 576911.69160460879 double
[66] 576911.69160460879 double
[67] 576911.69160460879 double
[68] 576911.69160460879 double
[69] 576911.69160460879 double
[70] 576911.69160460879 double
[71] 576911.69160460879 double
[72] 576911.69160460879 double
Tuesday, June 8, 2010 8:00 AM -
User-319574463 posted
As it is a repeatable bug, I suggest that you report it to Microsoft at https://connect.microsoft.com/dashboard/?wa=wsignin1.0
Please post a link to your report so that other experiencing the same problem may confirm your report.
Tuesday, June 29, 2010 2:24 AM -
User392490451 posted
Hi, I'm having the same problem "Arguments are not valid" using the IIR function on VB (Visual Studio 2010, NetFramework 4.0)
I thought probably the problem was the values, but using the same on excel (TIR function) it works.
This is an examlpe:
Dim TIR As Double
Dim array(60) As Doublearray(0) = -10395.08
array(1) = 257.77
array(2) = 258
array(3) = 258.25
array(4) = 258.5
array(5) = 258.74
array(6) = 259.01
array(7) = 259.26
array(8) = 259.53
array(9) = 259.78
array(10) = 260.06
array(11) = 260.33
array(12) = 260.61
array(13) = 260.89
array(14) = 261.18
array(15) = 261.48
array(16) = 261.77
array(17) = 262.07
array(18) = 262.37
array(19) = 262.68
array(20) = 263
array(21) = 263.32
array(22) = 263.64
array(23) = 263.97
array(24) = 264.3
array(25) = 264.64
array(26) = 265
array(27) = 265.34
array(28) = 265.7
array(29) = 266.06
array(30) = 266.43
array(31) = 266.8
array(32) = 267.18
array(33) = 267.56
array(34) = 267.94
array(35) = 268.34
array(36) = 268.75
array(37) = 269.15
array(38) = 269.57
array(39) = 269.99
array(40) = 270.41
array(41) = 270.85
array(42) = 271.29
array(43) = 271.74
array(44) = 272.19
array(45) = 272.65
array(46) = 273.12
array(47) = 273.59
array(48) = 274.08
array(49) = 274.56
array(50) = 275.06
array(51) = 275.58
array(52) = 276.08
array(53) = 276.6
array(54) = 277.14
array(55) = 277.67
array(56) = 278.21
array(57) = 278.77
array(58) = 279.33
array(59) = 279.9
array(60) = 280.49TIR = IRR(array)
I found this old post, have you finally fix this error?
Thanks in advance.
Thursday, July 5, 2012 12:04 PM -
User1584858649 posted
These are my values:
- values {Dimensions:[73]} double[]
[0] -62881732.0 double
[1] 379525.0 double
[2] 379525.0 double
[3] 379525.0 double
[4] 379525.0 double
[5] 379525.0 double
[6] 379525.0 double
[7] 379525.0 double
[8] 379525.0 double
[9] 379525.0 double
[10] 379525.0 double
[11] 379525.0 double
[12] 379525.0 double
[13] 421360.875 double
[14] 421360.875 double
[15] 421360.875 double
[16] 421360.875 double
[17] 421360.875 double
[18] 421360.875 double
[19] 421360.875 double
[20] 421360.875 double
[21] 421360.875 double
[22] 421360.875 double
[23] 421360.875 double
[24] 421360.875 double
[25] 455805.23625 double
[26] 455805.23625 double
[27] 455805.23625 double
[28] 455805.23625 double
[29] 455805.23625 double
[30] 455805.23625 double
[31] 455805.23625 double
[32] 455805.23625 double
[33] 455805.23625 double
[34] 455805.23625 double
[35] 455805.23625 double
[36] 455805.23625 double
[37] 493056.6307875 double
[38] 493056.6307875 double
[39] 493056.6307875 double
[40] 493056.6307875 double
[41] 493056.6307875 double
[42] 493056.6307875 double
[43] 493056.6307875 double
[44] 493056.6307875 double
[45] 493056.6307875 double
[46] 493056.6307875 double
[47] 493056.6307875 double
[48] 493056.6307875 double
[49] 533343.225182625 double
[50] 533343.225182625 double
[51] 533343.225182625 double
[52] 533343.225182625 double
[53] 533343.225182625 double
[54] 533343.225182625 double
[55] 533343.225182625 double
[56] 533343.225182625 double
[57] 533343.225182625 double
[58] 533343.225182625 double
[59] 533343.225182625 double
[60] 533343.225182625 double
[61] 576911.69160460879 double
[62] 576911.69160460879 double
[63] 576911.69160460879 double
[64] 576911.69160460879 double
[65] 576911.69160460879 double
[66] 576911.69160460879 double
[67] 576911.69160460879 double
[68] 576911.69160460879 double
[69] 576911.69160460879 double
[70] 576911.69160460879 double
[71] 576911.69160460879 double
[72] 576911.69160460879 doubleEven Excel does not report an IRR value for your cash flows, yet when I run your data through 3rd party Excel IRR function I get two different IRR values of -1.421% and -192.77% which I then checked with Excel NPV function that returns a net present value of 0 for both these IRR values
One can also confirm the results using IRR calculator from NJ Instruments at http://njinstruments.com/
IRR = -1.42%
How internal rate of return was calculated
f(r) = -62881732(1+r)^0 +379525(1+r)^-1 +379525(1+r)^-2 +379525(1+r)^-3 +379525(1+r)^-4 +379525(1+r)^-5 +379525(1+r)^-6 +379525(1+r)^-7 +379525(1+r)^-8 +379525(1+r)^-9 +379525(1+r)^-10 +379525(1+r)^-11 +379525(1+r)^-12 +421360.875(1+r)^-13 +421360.875(1+r)^-14 +421360.875(1+r)^-15 +421360.875(1+r)^-16 +421360.875(1+r)^-17 +421360.875(1+r)^-18 +421360.875(1+r)^-19 +421360.875(1+r)^-20 +421360.875(1+r)^-21 +421360.875(1+r)^-22 +421360.875(1+r)^-23 +421360.875(1+r)^-24 +455805.2363(1+r)^-25 +455805.2363(1+r)^-26 +455805.2363(1+r)^-27 +455805.2363(1+r)^-28 +455805.2363(1+r)^-29 +455805.2363(1+r)^-30 +455805.2363(1+r)^-31 +455805.2363(1+r)^-32 +455805.2363(1+r)^-33 +455805.2363(1+r)^-34 +455805.2363(1+r)^-35 +455805.2363(1+r)^-36 +493056.6308(1+r)^-37 +493056.6308(1+r)^-38 +493056.6308(1+r)^-39 +493056.6308(1+r)^-40 +493056.6308(1+r)^-41 +493056.6308(1+r)^-42 +493056.6308(1+r)^-43 +493056.6308(1+r)^-44 +493056.6308(1+r)^-45 +493056.6308(1+r)^-46 +493056.6308(1+r)^-47 +493056.6308(1+r)^-48 +533343.2252(1+r)^-49 +533343.2252(1+r)^-50 +533343.2252(1+r)^-51 +533343.2252(1+r)^-52 +533343.2252(1+r)^-53 +533343.2252(1+r)^-54 +533343.2252(1+r)^-55 +533343.2252(1+r)^-56 +533343.2252(1+r)^-57 +533343.2252(1+r)^-58 +533343.2252(1+r)^-59 +533343.2252(1+r)^-60 +576911.6916(1+r)^-61 +576911.6916(1+r)^-62 +576911.6916(1+r)^-63 +576911.6916(1+r)^-64 +576911.6916(1+r)^-65 +576911.6916(1+r)^-66 +576911.6916(1+r)^-67 +576911.6916(1+r)^-68 +576911.6916(1+r)^-69 +576911.6916(1+r)^-70 +576911.6916(1+r)^-71 +576911.6916(1+r)^-72
f'(r) = -379525(1+r)^-2 -759050(1+r)^-3 -1138575(1+r)^-4 -1518100(1+r)^-5 -1897625(1+r)^-6 -2277150(1+r)^-7 -2656675(1+r)^-8 -3036200(1+r)^-9 -3415725(1+r)^-10 -3795250(1+r)^-11 -4174775(1+r)^-12 -4554300(1+r)^-13 -5477691.375(1+r)^-14 -5899052.25(1+r)^-15 -6320413.125(1+r)^-16 -6741774(1+r)^-17 -7163134.875(1+r)^-18 -7584495.75(1+r)^-19 -8005856.625(1+r)^-20 -8427217.5(1+r)^-21 -8848578.375(1+r)^-22 -9269939.25(1+r)^-23 -9691300.125(1+r)^-24 -10112661(1+r)^-25 -11395130.9075(1+r)^-26 -11850936.1438(1+r)^-27 -12306741.3801(1+r)^-28 -12762546.6164(1+r)^-29 -13218351.8527(1+r)^-30 -13674157.089(1+r)^-31 -14129962.3253(1+r)^-32 -14585767.5616(1+r)^-33 -15041572.7979(1+r)^-34 -15497378.0342(1+r)^-35 -15953183.2705(1+r)^-36 -16408988.5068(1+r)^-37 -18243095.3396(1+r)^-38 -18736151.9704(1+r)^-39 -19229208.6012(1+r)^-40 -19722265.232(1+r)^-41 -20215321.8628(1+r)^-42 -20708378.4936(1+r)^-43 -21201435.1244(1+r)^-44 -21694491.7552(1+r)^-45 -22187548.386(1+r)^-46 -22680605.0168(1+r)^-47 -23173661.6476(1+r)^-48 -23666718.2784(1+r)^-49 -26133818.0348(1+r)^-50 -26667161.26(1+r)^-51 -27200504.4852(1+r)^-52 -27733847.7104(1+r)^-53 -28267190.9356(1+r)^-54 -28800534.1608(1+r)^-55 -29333877.386(1+r)^-56 -29867220.6112(1+r)^-57 -30400563.8364(1+r)^-58 -30933907.0616(1+r)^-59 -31467250.2868(1+r)^-60 -32000593.512(1+r)^-61 -35191613.1876(1+r)^-62 -35768524.8792(1+r)^-63 -36345436.5708(1+r)^-64 -36922348.2624(1+r)^-65 -37499259.954(1+r)^-66 -38076171.6456(1+r)^-67 -38653083.3372(1+r)^-68 -39229995.0288(1+r)^-69 -39806906.7204(1+r)^-70 -40383818.412(1+r)^-71 -40960730.1036(1+r)^-72 -41537641.7952(1+r)^-73
r0 = 0.05
f(r0) = -54702927.4746
f'(r0) = -160814482.422
r1 = 0.05 - -54702927.4746/-160814482.422 = -0.29016169844
Error Bound = -0.29016169844 - 0.05 = 0.340162 > 0.000001
r1 = -0.29016169844
f(r1) = 1.03382020609E+17
f'(r1) = -1.01321372814E+19
r2 = -0.29016169844 - 1.03382020609E+17/-1.01321372814E+19 = -0.279958321035
Error Bound = -0.279958321035 - -0.29016169844 = 0.010203 > 0.000001
r2 = -0.279958321035
f(r2) = 3.83369043354E+16
f'(r2) = -3.69750379273E+18
r3 = -0.279958321035 - 3.83369043354E+16/-3.69750379273E+18 = -0.269590000545
Error Bound = -0.269590000545 - -0.279958321035 = 0.010368 > 0.000001
r3 = -0.269590000545
f(r3) = 1.42176902088E+16
f'(r3) = -1.34919279905E+18
r4 = -0.269590000545 - 1.42176902088E+16/-1.34919279905E+18 = -0.259052077263
Error Bound = -0.259052077263 - -0.269590000545 = 0.010538 > 0.000001
r4 = -0.259052077263
f(r4) = 5.2733499682E+15
f'(r4) = -4.92256259263E+17
r5 = -0.259052077263 - 5.2733499682E+15/-4.92256259263E+17 = -0.248339465957
Error Bound = -0.248339465957 - -0.259052077263 = 0.010713 > 0.000001
r5 = -0.248339465957
f(r5) = 1.95612395306E+15
f'(r5) = -1.79577992097E+17
r6 = -0.248339465957 - 1.95612395306E+15/-1.79577992097E+17 = -0.237446572401
Error Bound = -0.237446572401 - -0.248339465957 = 0.010893 > 0.000001
r6 = -0.237446572401
f(r6) = 7.25715669102E+14
f'(r6) = -6.55014346502E+16
r7 = -0.237446572401 - 7.25715669102E+14/-6.55014346502E+16 = -0.226367186537
Error Bound = -0.226367186537 - -0.237446572401 = 0.011079 > 0.000001
r7 = -0.226367186537
f(r7) = 2.69281769819E+14
f'(r7) = -2.38876545341E+16
r8 = -0.226367186537 - 2.69281769819E+14/-2.38876545341E+16 = -0.21509434393
Error Bound = -0.21509434393 - -0.226367186537 = 0.011273 > 0.000001
r8 = -0.21509434393
f(r8) = 9.9937875405E+13
f'(r8) = -8.70978996346E+15
r9 = -0.21509434393 - 9.9937875405E+13/-8.70978996346E+15 = -0.203620143539
Error Bound = -0.203620143539 - -0.21509434393 = 0.011474 > 0.000001
r9 = -0.203620143539
f(r9) = 3.70980896373E+13
f'(r9) = -3.17494533206E+15
r10 = -0.203620143539 - 3.70980896373E+13/-3.17494533206E+15 = -0.191935504669
Error Bound = -0.191935504669 - -0.203620143539 = 0.011685 > 0.000001
r10 = -0.191935504669
f(r10) = 1.37749830768E+13
f'(r10) = -1.15701069862E+15
r11 = -0.191935504669 - 1.37749830768E+13/-1.15701069862E+15 = -0.180029838547
Error Bound = -0.180029838547 - -0.191935504669 = 0.011906 > 0.000001
r11 = -0.180029838547
f(r11) = 5.11651471693E+12
f'(r11) = -4.21485654074E+14
r12 = -0.180029838547 - 5.11651471693E+12/-4.21485654074E+14 = -0.167890600432
Error Bound = -0.167890600432 - -0.180029838547 = 0.012139 > 0.000001
r12 = -0.167890600432
f(r12) = 1.9012279051E+12
f'(r12) = -1.53474323454E+14
r13 = -0.167890600432 - 1.9012279051E+12/-1.53474323454E+14 = -0.155502678711
Error Bound = -0.155502678711 - -0.167890600432 = 0.012388 > 0.000001
r13 = -0.155502678711
f(r13) = 706828481029
f'(r13) = -5.58532512525E+13
r14 = -0.155502678711 - 706828481029/-5.58532512525E+13 = -0.142847578691
Error Bound = -0.142847578691 - -0.155502678711 = 0.012655 > 0.000001
r14 = -0.142847578691
f(r14) = 262947328781
f'(r14) = -2.031238696E+13
r15 = -0.142847578691 - 262947328781/-2.031238696E+13 = -0.129902407388
Error Bound = -0.129902407388 - -0.142847578691 = 0.012945 > 0.000001
r15 = -0.129902407388
f(r15) = 97895747849.3
f'(r15) = -7.38082155089E+12
r16 = -0.129902407388 - 97895747849.3/-7.38082155089E+12 = -0.116638877417
Error Bound = -0.116638877417 - -0.129902407388 = 0.013264 > 0.000001
r16 = -0.116638877417
f(r16) = 36480582871.5
f'(r16) = -2.67932129854E+12
r17 = -0.116638877417 - 36480582871.5/-2.67932129854E+12 = -0.10302327152
Error Bound = -0.10302327152 - -0.116638877417 = 0.013616 > 0.000001
r17 = -0.10302327152
f(r17) = 13607250119.7
f'(r17) = -971758341137
r18 = -0.10302327152 - 13607250119.7/-971758341137 = -0.0890205616452
Error Bound = -0.0890205616452 - -0.10302327152 = 0.014003 > 0.000001
r18 = -0.0890205616452
f(r18) = 5077838849.31
f'(r18) = -352430820909
r19 = -0.0890205616452 - 5077838849.31/-352430820909 = -0.0746125174333
Error Bound = -0.0746125174333 - -0.0890205616452 = 0.014408 > 0.000001
r19 = -0.0746125174333
f(r19) = 1891823183.58
f'(r19) = -128219849219
r20 = -0.0746125174333 - 1891823183.58/-128219849219 = -0.0598579907737
Error Bound = -0.0598579907737 - -0.0746125174333 = 0.014755 > 0.000001
r20 = -0.0598579907737
f(r20) = 698933654.555
f'(r20) = -47253758678.9
r21 = -0.0598579907737 - 698933654.555/-47253758678.9 = -0.0450669207277
Error Bound = -0.0450669207277 - -0.0598579907737 = 0.014791 > 0.000001
r21 = -0.0450669207277
f(r21) = 251027058.705
f'(r21) = -18117949479.3
r22 = -0.0450669207277 - 251027058.705/-18117949479.3 = -0.0312117623947
Error Bound = -0.0312117623947 - -0.0450669207277 = 0.013855 > 0.000001
r22 = -0.0312117623947
f(r22) = 82892244.8584
f'(r22) = -7706864624.03
r23 = -0.0312117623947 - 82892244.8584/-7706864624.03 = -0.0204561245443
Error Bound = -0.0204561245443 - -0.0312117623947 = 0.010756 > 0.000001
r23 = -0.0204561245443
f(r23) = 21575968.2985
f'(r23) = -4100121356.61
r24 = -0.0204561245443 - 21575968.2985/-4100121356.61 = -0.015193849011
Error Bound = -0.015193849011 - -0.0204561245443 = 0.005262 > 0.000001
r24 = -0.015193849011
f(r24) = 2924938.5849
f'(r24) = -3045245956.62
r25 = -0.015193849011 - 2924938.5849/-3045245956.62 = -0.0142333556299
Error Bound = -0.0142333556299 - -0.015193849011 = 0.00096 > 0.000001
r25 = -0.0142333556299
f(r25) = 76848.8809
f'(r25) = -2886769022.1
r26 = -0.0142333556299 - 76848.8809/-2886769022.1 = -0.0142067345597
Error Bound = -0.0142067345597 - -0.0142333556299 = 2.7E-5 > 0.000001
r26 = -0.0142067345597
f(r26) = 56.7441
f'(r26) = -2882507070.24
r27 = -0.0142067345597 - 56.7441/-2882507070.24 = -0.014206714874
Error Bound = -0.014206714874 - -0.0142067345597 = 0 < 0.000001
IRR = r27 = -0.014206714874 or -1.42%---------------------------------------------------------------------------------------------
IRR = -192.77%
How internal rate of return was calculated
f(r) = -62881732(1+r)^0 +379525(1+r)^-1 +379525(1+r)^-2 +379525(1+r)^-3 +379525(1+r)^-4 +379525(1+r)^-5 +379525(1+r)^-6 +379525(1+r)^-7 +379525(1+r)^-8 +379525(1+r)^-9 +379525(1+r)^-10 +379525(1+r)^-11 +379525(1+r)^-12 +421360.875(1+r)^-13 +421360.875(1+r)^-14 +421360.875(1+r)^-15 +421360.875(1+r)^-16 +421360.875(1+r)^-17 +421360.875(1+r)^-18 +421360.875(1+r)^-19 +421360.875(1+r)^-20 +421360.875(1+r)^-21 +421360.875(1+r)^-22 +421360.875(1+r)^-23 +421360.875(1+r)^-24 +455805.2363(1+r)^-25 +455805.2363(1+r)^-26 +455805.2363(1+r)^-27 +455805.2363(1+r)^-28 +455805.2363(1+r)^-29 +455805.2363(1+r)^-30 +455805.2363(1+r)^-31 +455805.2363(1+r)^-32 +455805.2363(1+r)^-33 +455805.2363(1+r)^-34 +455805.2363(1+r)^-35 +455805.2363(1+r)^-36 +493056.6308(1+r)^-37 +493056.6308(1+r)^-38 +493056.6308(1+r)^-39 +493056.6308(1+r)^-40 +493056.6308(1+r)^-41 +493056.6308(1+r)^-42 +493056.6308(1+r)^-43 +493056.6308(1+r)^-44 +493056.6308(1+r)^-45 +493056.6308(1+r)^-46 +493056.6308(1+r)^-47 +493056.6308(1+r)^-48 +533343.2252(1+r)^-49 +533343.2252(1+r)^-50 +533343.2252(1+r)^-51 +533343.2252(1+r)^-52 +533343.2252(1+r)^-53 +533343.2252(1+r)^-54 +533343.2252(1+r)^-55 +533343.2252(1+r)^-56 +533343.2252(1+r)^-57 +533343.2252(1+r)^-58 +533343.2252(1+r)^-59 +533343.2252(1+r)^-60 +576911.6916(1+r)^-61 +576911.6916(1+r)^-62 +576911.6916(1+r)^-63 +576911.6916(1+r)^-64 +576911.6916(1+r)^-65 +576911.6916(1+r)^-66 +576911.6916(1+r)^-67 +576911.6916(1+r)^-68 +576911.6916(1+r)^-69 +576911.6916(1+r)^-70 +576911.6916(1+r)^-71 +576911.6916(1+r)^-72
f'(r) = -379525(1+r)^-2 -759050(1+r)^-3 -1138575(1+r)^-4 -1518100(1+r)^-5 -1897625(1+r)^-6 -2277150(1+r)^-7 -2656675(1+r)^-8 -3036200(1+r)^-9 -3415725(1+r)^-10 -3795250(1+r)^-11 -4174775(1+r)^-12 -4554300(1+r)^-13 -5477691.375(1+r)^-14 -5899052.25(1+r)^-15 -6320413.125(1+r)^-16 -6741774(1+r)^-17 -7163134.875(1+r)^-18 -7584495.75(1+r)^-19 -8005856.625(1+r)^-20 -8427217.5(1+r)^-21 -8848578.375(1+r)^-22 -9269939.25(1+r)^-23 -9691300.125(1+r)^-24 -10112661(1+r)^-25 -11395130.9075(1+r)^-26 -11850936.1438(1+r)^-27 -12306741.3801(1+r)^-28 -12762546.6164(1+r)^-29 -13218351.8527(1+r)^-30 -13674157.089(1+r)^-31 -14129962.3253(1+r)^-32 -14585767.5616(1+r)^-33 -15041572.7979(1+r)^-34 -15497378.0342(1+r)^-35 -15953183.2705(1+r)^-36 -16408988.5068(1+r)^-37 -18243095.3396(1+r)^-38 -18736151.9704(1+r)^-39 -19229208.6012(1+r)^-40 -19722265.232(1+r)^-41 -20215321.8628(1+r)^-42 -20708378.4936(1+r)^-43 -21201435.1244(1+r)^-44 -21694491.7552(1+r)^-45 -22187548.386(1+r)^-46 -22680605.0168(1+r)^-47 -23173661.6476(1+r)^-48 -23666718.2784(1+r)^-49 -26133818.0348(1+r)^-50 -26667161.26(1+r)^-51 -27200504.4852(1+r)^-52 -27733847.7104(1+r)^-53 -28267190.9356(1+r)^-54 -28800534.1608(1+r)^-55 -29333877.386(1+r)^-56 -29867220.6112(1+r)^-57 -30400563.8364(1+r)^-58 -30933907.0616(1+r)^-59 -31467250.2868(1+r)^-60 -32000593.512(1+r)^-61 -35191613.1876(1+r)^-62 -35768524.8792(1+r)^-63 -36345436.5708(1+r)^-64 -36922348.2624(1+r)^-65 -37499259.954(1+r)^-66 -38076171.6456(1+r)^-67 -38653083.3372(1+r)^-68 -39229995.0288(1+r)^-69 -39806906.7204(1+r)^-70 -40383818.412(1+r)^-71 -40960730.1036(1+r)^-72 -41537641.7952(1+r)^-73
r0 = -1.5
f(r0) = 1.81622546242E+27
f'(r0) = 2.62748087622E+29
r1 = -1.5 - 1.81622546242E+27/2.62748087622E+29 = -1.50691242124
Error Bound = -1.50691242124 - -1.5 = 0.006912 > 0.000001
r1 = -1.50691242124
f(r1) = 6.72729843342E+26
f'(r1) = 9.59988803439E+28
r2 = -1.50691242124 - 6.72729843342E+26/9.59988803439E+28 = -1.51392010551
Error Bound = -1.51392010551 - -1.50691242124 = 0.007008 > 0.000001
r2 = -1.51392010551
f(r2) = 2.49179001395E+26
f'(r2) = 3.50746189871E+28
r3 = -1.51392010551 - 2.49179001395E+26/3.50746189871E+28 = -1.52102435948
Error Bound = -1.52102435948 - -1.51392010551 = 0.007104 > 0.000001
r3 = -1.52102435948
f(r3) = 9.22958123878E+25
f'(r3) = 1.28150395429E+28
r4 = -1.52102435948 - 9.22958123878E+25/1.28150395429E+28 = -1.52822650756
Error Bound = -1.52822650756 - -1.52102435948 = 0.007202 > 0.000001
r4 = -1.52822650756
f(r4) = 3.41863202625E+25
f'(r4) = 4.6821695742E+27
r5 = -1.52822650756 - 3.41863202625E+25/4.6821695742E+27 = -1.53552789204
Error Bound = -1.53552789204 - -1.52822650756 = 0.007301 > 0.000001
r5 = -1.53552789204
f(r5) = 1.26625891398E+25
f'(r5) = 1.71070266323E+27
r6 = -1.53552789204 - 1.26625891398E+25/1.71070266323E+27 = -1.54292987335
Error Bound = -1.54292987335 - -1.53552789204 = 0.007402 > 0.000001
r6 = -1.54292987335
f(r6) = 4.69021192769E+24
f'(r6) = 6.25031832775E+26
r7 = -1.54292987335 - 4.69021192769E+24/6.25031832775E+26 = -1.55043383024
Error Bound = -1.55043383024 - -1.54292987335 = 0.007504 > 0.000001
r7 = -1.55043383024
f(r7) = 1.73724952939E+24
f'(r7) = 2.2836521994E+26
r8 = -1.55043383024 - 1.73724952939E+24/2.2836521994E+26 = -1.55804115998
Error Bound = -1.55804115998 - -1.55043383024 = 0.007607 > 0.000001
r8 = -1.55804115998
f(r8) = 6.43475053111E+23
f'(r8) = 8.34368723607E+25
r9 = -1.55804115998 - 6.43475053111E+23/8.34368723607E+25 = -1.56575327856
Error Bound = -1.56575327856 - -1.55804115998 = 0.007712 > 0.000001
r9 = -1.56575327856
f(r9) = 2.3834222609E+23
f'(r9) = 3.04850078897E+25
r10 = -1.56575327856 - 2.3834222609E+23/3.04850078897E+25 = -1.57357162084
Error Bound = -1.57357162084 - -1.56575327856 = 0.007818 > 0.000001
r10 = -1.57357162084
f(r10) = 8.82815644677E+22
f'(r10) = 1.11381961469E+25
r11 = -1.57357162084 - 8.82815644677E+22/1.11381961469E+25 = -1.58149764075
Error Bound = -1.58149764075 - -1.57357162084 = 0.007926 > 0.000001
r11 = -1.58149764075
f(r11) = 3.26993250337E+22
f'(r11) = 4.06952463399E+24
r12 = -1.58149764075 - 3.26993250337E+22/4.06952463399E+24 = -1.58953281143
Error Bound = -1.58953281143 - -1.58149764075 = 0.008035 > 0.000001
r12 = -1.58953281143
f(r12) = 1.21117605407E+22
f'(r12) = 1.48686928692E+24
r13 = -1.58953281143 - 1.21117605407E+22/1.48686928692E+24 = -1.59767862536
Error Bound = -1.59767862536 - -1.58953281143 = 0.008146 > 0.000001
r13 = -1.59767862536
f(r13) = 4.48616727534E+21
f'(r13) = 5.43253096794E+23
r14 = -1.59767862536 - 4.48616727534E+21/5.43253096794E+23 = -1.60593659444
Error Bound = -1.60593659444 - -1.59767862536 = 0.008258 > 0.000001
r14 = -1.60593659444
f(r14) = 1.66166443662E+21
f'(r14) = 1.98486954461E+23
r15 = -1.60593659444 - 1.66166443662E+21/1.98486954461E+23 = -1.6143082501
Error Bound = -1.6143082501 - -1.60593659444 = 0.008372 > 0.000001
r15 = -1.6143082501
f(r15) = 6.15475589218E+20
f'(r15) = 7.2520717802E+22
r16 = -1.6143082501 - 6.15475589218E+20/7.2520717802E+22 = -1.62279514333
Error Bound = -1.62279514333 - -1.6143082501 = 0.008487 > 0.000001
r16 = -1.62279514333
f(r16) = 2.27970132395E+20
f'(r16) = 2.64967510683E+22
r17 = -1.62279514333 - 2.27970132395E+20/2.64967510683E+22 = -1.63139884466
Error Bound = -1.63139884466 - -1.62279514333 = 0.008604 > 0.000001
r17 = -1.63139884466
f(r17) = 8.44393030284E+19
f'(r17) = 9.68107549631E+21
r18 = -1.63139884466 - 8.44393030284E+19/9.68107549631E+21 = -1.64012094409
Error Bound = -1.64012094409 - -1.63139884466 = 0.008722 > 0.000001
r18 = -1.64012094409
f(r18) = 3.12759744194E+19
f'(r18) = 3.53716313619E+21
r19 = -1.64012094409 - 3.12759744194E+19/3.53716313619E+21 = -1.64896305095
Error Bound = -1.64896305095 - -1.64012094409 = 0.008842 > 0.000001
r19 = -1.64896305095
f(r19) = 1.15844793854E+19
f'(r19) = 1.292370803E+21
r20 = -1.64896305095 - 1.15844793854E+19/1.292370803E+21 = -1.65792679367
Error Bound = -1.65792679367 - -1.64896305095 = 0.008964 > 0.000001
r20 = -1.65792679367
f(r20) = 4.29083274097E+18
f'(r20) = 4.72193304438E+20
r21 = -1.65792679367 - 4.29083274097E+18/4.72193304438E+20 = -1.66701381947
Error Bound = -1.66701381947 - -1.65792679367 = 0.009087 > 0.000001
r21 = -1.66701381947
f(r21) = 1.58930028178E+18
f'(r21) = 1.72525477968E+20
r22 = -1.66701381947 - 1.58930028178E+18/1.72525477968E+20 = -1.67622579385
Error Bound = -1.67622579385 - -1.66701381947 = 0.009212 > 0.000001
r22 = -1.67622579385
f(r22) = 5.88666803165E+17
f'(r22) = 6.30358318858E+19
r23 = -1.67622579385 - 5.88666803165E+17/6.30358318858E+19 = -1.68556439993
Error Bound = -1.68556439993 - -1.67622579385 = 0.009339 > 0.000001
r23 = -1.68556439993
f(r23) = 2.1803801561E+17
f'(r23) = 2.30315253082E+19
r24 = -1.68556439993 - 2.1803801561E+17/2.30315253082E+19 = -1.69503133765
Error Bound = -1.69503133765 - -1.68556439993 = 0.009467 > 0.000001
r24 = -1.69503133765
f(r24) = 8.07595412346E+16
f'(r24) = 8.41509514856E+18
r25 = -1.69503133765 - 8.07595412346E+16/8.41509514856E+18 = -1.70462832257
Error Bound = -1.70462832257 - -1.69503133765 = 0.009597 > 0.000001
r25 = -1.70462832257
f(r25) = 2.99126051633E+16
f'(r25) = 3.0746569393E+18
r26 = -1.70462832257 - 2.99126051633E+16/3.0746569393E+18 = -1.71435708443
Error Bound = -1.71435708443 - -1.70462832257 = 0.009729 > 0.000001
r26 = -1.71435708443
f(r26) = 1.10793222769E+16
f'(r26) = 1.12340365547E+18
r27 = -1.71435708443 - 1.10793222769E+16/1.12340365547E+18 = -1.72421936521
Error Bound = -1.72421936521 - -1.71435708443 = 0.009862 > 0.000001
r27 = -1.72421936521
f(r27) = 4.10365135464E+15
f'(r27) = 4.10465642291E+17
r28 = -1.72421936521 - 4.10365135464E+15/4.10465642291E+17 = -1.7342169166
Error Bound = -1.7342169166 - -1.72421936521 = 0.009998 > 0.000001
r28 = -1.7342169166
f(r28) = 1.51993740743E+15
f'(r28) = 1.49975370317E+17
r29 = -1.7342169166 - 1.51993740743E+15/1.49975370317E+17 = -1.74435149673
Error Bound = -1.74435149673 - -1.7342169166 = 0.010135 > 0.000001
r29 = -1.74435149673
f(r29) = 5.62961304215E+14
f'(r29) = 5.47981198552E+16
r30 = -1.74435149673 - 5.62961304215E+14/5.47981198552E+16 = -1.7546248657
Error Bound = -1.7546248657 - -1.74435149673 = 0.010273 > 0.000001
r30 = -1.7546248657
f(r30) = 2.08510764696E+14
f'(r30) = 2.00223246823E+16
r31 = -1.7546248657 - 2.08510764696E+14/2.00223246823E+16 = -1.76503877957
Error Bound = -1.76503877957 - -1.7546248657 = 0.010414 > 0.000001
r31 = -1.76503877957
f(r31) = 7.72280149707E+13
f'(r31) = 7.31589021275E+15
r32 = -1.76503877957 - 7.72280149707E+13/7.31589021275E+15 = -1.77559498158
Error Bound = -1.77559498158 - -1.76503877957 = 0.010556 > 0.000001
r32 = -1.77559498158
f(r32) = 2.86033468073E+13
f'(r32) = 2.67315828479E+15
r33 = -1.77559498158 - 2.86033468073E+13/2.67315828479E+15 = -1.78629518851
Error Bound = -1.78629518851 - -1.77559498158 = 0.0107 > 0.000001
r33 = -1.78629518851
f(r33) = 1.05938341774E+13
f'(r33) = 9.7676129277E+14
r34 = -1.78629518851 - 1.05938341774E+13/9.7676129277E+14 = -1.79714106688
Error Bound = -1.79714106688 - -1.78629518851 = 0.010846 > 0.000001
r34 = -1.79714106688
f(r34) = 3.92357383994E+12
f'(r34) = 3.56911794358E+14
r35 = -1.79714106688 - 3.92357383994E+12/3.56911794358E+14 = -1.80813418591
Error Bound = -1.80813418591 - -1.79714106688 = 0.010993 > 0.000001
r35 = -1.80813418591
f(r35) = 1.45311234005E+12
f'(r35) = 1.3042074143E+14
r36 = -1.80813418591 - 1.45311234005E+12/1.3042074143E+14 = -1.81927591325
Error Bound = -1.81927591325 - -1.80813418591 = 0.011142 > 0.000001
r36 = -1.81927591325
f(r36) = 538143002685
f'(r36) = 4.76601810846E+13
r37 = -1.81927591325 - 538143002685/4.76601810846E+13 = -1.83056716289
Error Bound = -1.83056716289 - -1.81927591325 = 0.011291 > 0.000001
r37 = -1.83056716289
f(r37) = 199278262600
f'(r37) = 1.74185315975E+13
r38 = -1.83056716289 - 199278262600/1.74185315975E+13 = -1.84200775198
Error Bound = -1.84200775198 - -1.83056716289 = 0.011441 > 0.000001
r38 = -1.84200775198
f(r38) = 73780704457.2
f'(r38) = 6.36756584407E+12
r39 = -1.84200775198 - 73780704457.2/6.36756584407E+12 = -1.85359470786
Error Bound = -1.85359470786 - -1.84200775198 = 0.011587 > 0.000001
r39 = -1.85359470786
f(r39) = 27304567935.4
f'(r39) = 2.32913801254E+12
r40 = -1.85359470786 - 27304567935.4/2.32913801254E+12 = -1.8653177435
Error Bound = -1.8653177435 - -1.85359470786 = 0.011723 > 0.000001
r40 = -1.8653177435
f(r40) = 10093575090.8
f'(r40) = 853263769349
r41 = -1.8653177435 - 10093575090.8/853263769349 = -1.87714711614
Error Bound = -1.87714711614 - -1.8653177435 = 0.011829 > 0.000001
r41 = -1.87714711614
f(r41) = 3720419914.78
f'(r41) = 313847691418
r42 = -1.87714711614 - 3720419914.78/313847691418 = -1.88900133721
Error Bound = -1.88900133721 - -1.87714711614 = 0.011854 > 0.000001
r42 = -1.88900133721
f(r42) = 1360757157.41
f'(r42) = 116673561096
r43 = -1.88900133721 - 1360757157.41/116673561096 = -1.90066428076
Error Bound = -1.90066428076 - -1.88900133721 = 0.011663 > 0.000001
r43 = -1.90066428076
f(r43) = 487468400.538
f'(r43) = 44600236866.1
r44 = -1.90066428076 - 487468400.538/44600236866.1 = -1.91159400748
Error Bound = -1.91159400748 - -1.90066428076 = 0.01093 > 0.000001
r44 = -1.91159400748
f(r44) = 165062031.505
f'(r44) = 18297801208.1
r45 = -1.91159400748 - 165062031.505/18297801208.1 = -1.9206148745
Error Bound = -1.9206148745 - -1.91159400748 = 0.009021 > 0.000001
r45 = -1.9206148745
f(r45) = 47887025.5891
f'(r45) = 8832995635.16
r46 = -1.9206148745 - 47887025.5891/8832995635.16 = -1.92603625447
Error Bound = -1.92603625447 - -1.9206148745 = 0.005421 > 0.000001
r46 = -1.92603625447
f(r46) = 9058837.0471
f'(r46) = 5718603608.64
r47 = -1.92603625447 - 9058837.0471/5718603608.64 = -1.92762035396
Error Bound = -1.92762035396 - -1.92603625447 = 0.001584 > 0.000001
r47 = -1.92762035396
f(r47) = 550264.2382
f'(r47) = 5038380733.5
r48 = -1.92762035396 - 550264.2382/5038380733.5 = -1.92772956846
Error Bound = -1.92772956846 - -1.92762035396 = 0.000109 > 0.000001
r48 = -1.92772956846
f(r48) = 2393.4883
f'(r48) = 4994614109.47
r49 = -1.92772956846 - 2393.4883/4994614109.47 = -1.92773004767
Error Bound = -1.92773004767 - -1.92772956846 = 0 < 0.000001
IRR = r49 = -1.92773004767 or -192.77%Wednesday, May 29, 2013 3:18 AM -
User1584858649 posted
Hi, I'm having the same problem "Arguments are not valid" using the IIR function on VB (Visual Studio 2010, NetFramework 4.0)
I thought probably the problem was the values, but using the same on excel (TIR function) it works.
This is an examlpe:
Dim TIR As Double
Dim array(60) As Doublearray(0) = -10395.08
array(1) = 257.77
array(2) = 258
array(3) = 258.25
array(4) = 258.5
array(5) = 258.74
array(6) = 259.01
array(7) = 259.26
array(8) = 259.53
array(9) = 259.78
array(10) = 260.06
array(11) = 260.33
array(12) = 260.61
array(13) = 260.89
array(14) = 261.18
array(15) = 261.48
array(16) = 261.77
array(17) = 262.07
array(18) = 262.37
array(19) = 262.68
array(20) = 263
array(21) = 263.32
array(22) = 263.64
array(23) = 263.97
array(24) = 264.3
array(25) = 264.64
array(26) = 265
array(27) = 265.34
array(28) = 265.7
array(29) = 266.06
array(30) = 266.43
array(31) = 266.8
array(32) = 267.18
array(33) = 267.56
array(34) = 267.94
array(35) = 268.34
array(36) = 268.75
array(37) = 269.15
array(38) = 269.57
array(39) = 269.99
array(40) = 270.41
array(41) = 270.85
array(42) = 271.29
array(43) = 271.74
array(44) = 272.19
array(45) = 272.65
array(46) = 273.12
array(47) = 273.59
array(48) = 274.08
array(49) = 274.56
array(50) = 275.06
array(51) = 275.58
array(52) = 276.08
array(53) = 276.6
array(54) = 277.14
array(55) = 277.67
array(56) = 278.21
array(57) = 278.77
array(58) = 279.33
array(59) = 279.9
array(60) = 280.49TIR = IRR(array)
I found this old post, have you finally fix this error?
Thanks in advance.
I did run your numbers in Excel 2007 and it reported a #NUM! error for the rate. Yet when I used a 3rd party Excel IRR function I was able to get the internal rate of return of 1.527%
You can confirm the results of the IRR calculation from this web at http://njinstruments.com/
IRR = 1.53%
How internal rate of return was calculated
f(r) = -10395.08(1+r)^0 +257.77(1+r)^-1 +258(1+r)^-2 +258.25(1+r)^-3 +258.5(1+r)^-4 +258.74(1+r)^-5 +259.01(1+r)^-6 +259.26(1+r)^-7 +259.53(1+r)^-8 +259.78(1+r)^-9 +260.06(1+r)^-10 +260.33(1+r)^-11 +260.61(1+r)^-12 +260.89(1+r)^-13 +261.18(1+r)^-14 +261.48(1+r)^-15 +261.77(1+r)^-16 +262.07(1+r)^-17 +262.37(1+r)^-18 +262.68(1+r)^-19 +263(1+r)^-20 +263.32(1+r)^-21 +263.64(1+r)^-22 +263.97(1+r)^-23 +264.3(1+r)^-24 +264.64(1+r)^-25 +265(1+r)^-26 +265.34(1+r)^-27 +265.7(1+r)^-28 +266.06(1+r)^-29 +266.43(1+r)^-30 +266.8(1+r)^-31 +267.18(1+r)^-32 +267.56(1+r)^-33 +267.94(1+r)^-34 +268.34(1+r)^-35 +268.75(1+r)^-36 +269.15(1+r)^-37 +269.57(1+r)^-38 +269.99(1+r)^-39 +270.41(1+r)^-40 +270.85(1+r)^-41 +271.29(1+r)^-42 +271.74(1+r)^-43 +272.19(1+r)^-44 +272.65(1+r)^-45 +273.12(1+r)^-46 +273.59(1+r)^-47 +274.08(1+r)^-48 +274.56(1+r)^-49 +275.06(1+r)^-50 +275.58(1+r)^-51 +276.08(1+r)^-52 +276.6(1+r)^-53 +277.14(1+r)^-54 +277.67(1+r)^-55 +278.21(1+r)^-56 +278.77(1+r)^-57 +279.33(1+r)^-58 +279.9(1+r)^-59 +280.49(1+r)^-60
f'(r) = -257.77(1+r)^-2 -516(1+r)^-3 -774.75(1+r)^-4 -1034(1+r)^-5 -1293.7(1+r)^-6 -1554.06(1+r)^-7 -1814.82(1+r)^-8 -2076.24(1+r)^-9 -2338.02(1+r)^-10 -2600.6(1+r)^-11 -2863.63(1+r)^-12 -3127.32(1+r)^-13 -3391.57(1+r)^-14 -3656.52(1+r)^-15 -3922.2(1+r)^-16 -4188.32(1+r)^-17 -4455.19(1+r)^-18 -4722.66(1+r)^-19 -4990.92(1+r)^-20 -5260(1+r)^-21 -5529.72(1+r)^-22 -5800.08(1+r)^-23 -6071.31(1+r)^-24 -6343.2(1+r)^-25 -6616(1+r)^-26 -6890(1+r)^-27 -7164.18(1+r)^-28 -7439.6(1+r)^-29 -7715.74(1+r)^-30 -7992.9(1+r)^-31 -8270.8(1+r)^-32 -8549.76(1+r)^-33 -8829.48(1+r)^-34 -9109.96(1+r)^-35 -9391.9(1+r)^-36 -9675(1+r)^-37 -9958.55(1+r)^-38 -10243.66(1+r)^-39 -10529.61(1+r)^-40 -10816.4(1+r)^-41 -11104.85(1+r)^-42 -11394.18(1+r)^-43 -11684.82(1+r)^-44 -11976.36(1+r)^-45 -12269.25(1+r)^-46 -12563.52(1+r)^-47 -12858.73(1+r)^-48 -13155.84(1+r)^-49 -13453.44(1+r)^-50 -13753(1+r)^-51 -14054.58(1+r)^-52 -14356.16(1+r)^-53 -14659.8(1+r)^-54 -14965.56(1+r)^-55 -15271.85(1+r)^-56 -15579.76(1+r)^-57 -15889.89(1+r)^-58 -16201.14(1+r)^-59 -16514.1(1+r)^-60 -16829.4(1+r)^-61
r0 = 0.1
f(r0) = -7798.6032
f'(r0) = -25779.8138
r1 = 0.1 - -7798.6032/-25779.8138 = -0.202508127172
Error Bound = -0.202508127172 - 0.1 = 0.302508 > 0.000001
r1 = -0.202508127172
f(r1) = 1082766140.62
f'(r1) = -76165903721.5
r2 = -0.202508127172 - 1082766140.62/-76165903721.5 = -0.188292236757
Error Bound = -0.188292236757 - -0.202508127172 = 0.014216 > 0.000001
r2 = -0.188292236757
f(r2) = 403117575.275
f'(r2) = -27678526412.1
r3 = -0.188292236757 - 403117575.275/-27678526412.1 = -0.173727965189
Error Bound = -0.173727965189 - -0.188292236757 = 0.014564 > 0.000001
r3 = -0.173727965189
f(r3) = 150182155.58
f'(r3) = -10050893136.3
r4 = -0.173727965189 - 150182155.58/-10050893136.3 = -0.158785795021
Error Bound = -0.158785795021 - -0.173727965189 = 0.014942 > 0.000001
r4 = -0.158785795021
f(r4) = 55999092.4633
f'(r4) = -3646257759.4
r5 = -0.158785795021 - 55999092.4633/-3646257759.4 = -0.143427831828
Error Bound = -0.143427831828 - -0.158785795021 = 0.015358 > 0.000001
r5 = -0.143427831828
f(r5) = 20904420.9495
f'(r5) = -1321104123.57
r6 = -0.143427831828 - 20904420.9495/-1321104123.57 = -0.127604384927
Error Bound = -0.127604384927 - -0.143427831828 = 0.015823 > 0.000001
r6 = -0.127604384927
f(r6) = 7815318.1939
f'(r6) = -477858787.87
r7 = -0.127604384927 - 7815318.1939/-477858787.87 = -0.111249515262
Error Bound = -0.111249515262 - -0.127604384927 = 0.016355 > 0.000001
r7 = -0.111249515262
f(r7) = 2927475.9239
f'(r7) = -172480907.736
r8 = -0.111249515262 - 2927475.9239/-172480907.736 = -0.0942767617998
Error Bound = -0.0942767617998 - -0.111249515262 = 0.016973 > 0.000001
r8 = -0.0942767617998
f(r8) = 1099078.7698
f'(r8) = -62109199.8821
r9 = -0.0942767617998 - 1099078.7698/-62109199.8821 = -0.0765808524683
Error Bound = -0.0765808524683 - -0.0942767617998 = 0.017696 > 0.000001
r9 = -0.0765808524683
f(r9) = 413446.1721
f'(r9) = -22330974.4747
r10 = -0.0765808524683 - 413446.1721/-22330974.4747 = -0.0580663817905
Error Bound = -0.0580663817905 - -0.0765808524683 = 0.018514 > 0.000001
r10 = -0.0580663817905
f(r10) = 155404.5776
f'(r10) = -8053389.0946
r11 = -0.0580663817905 - 155404.5776/-8053389.0946 = -0.0387695893689
Error Bound = -0.0387695893689 - -0.0580663817905 = 0.019297 > 0.000001
r11 = -0.0387695893689
f(r11) = 57762.9691
f'(r11) = -2958561.4249
r12 = -0.0387695893689 - 57762.9691/-2958561.4249 = -0.0192455840102
Error Bound = -0.0192455840102 - -0.0387695893689 = 0.019524 > 0.000001
r12 = -0.0192455840102
f(r12) = 20559.682
f'(r12) = -1155493.0236
r13 = -0.0192455840102 - 20559.682/-1155493.0236 = -0.00145258864751
Error Bound = -0.00145258864751 - -0.0192455840102 = 0.017793 > 0.000001
r13 = -0.00145258864751
f(r13) = 6396.4434
f'(r13) = -527395.9568
r14 = -0.00145258864751 - 6396.4434/-527395.9568 = 0.0106757625124
Error Bound = 0.0106757625124 - -0.00145258864751 = 0.012128 > 0.000001
r14 = 0.0106757625124
f(r14) = 1357.9017
f'(r14) = -322676.8119
r15 = 0.0106757625124 - 1357.9017/-322676.8119 = 0.0148840033239
Error Bound = 0.0148840033239 - 0.0106757625124 = 0.004208 > 0.000001
r15 = 0.0148840033239
f(r15) = 104.6859
f'(r15) = -274446.7934
r16 = 0.0148840033239 - 104.6859/-274446.7934 = 0.015265446503
Error Bound = 0.015265446503 - 0.0148840033239 = 0.000381 > 0.000001
r16 = 0.015265446503
f(r16) = 0.7532
f'(r16) = -270508.7738
r17 = 0.015265446503 - 0.7532/-270508.7738 = 0.0152682308647
Error Bound = 0.0152682308647 - 0.015265446503 = 3.0E-6 > 0.000001
r17 = 0.0152682308647
f(r17) = 0
f'(r17) = -270480.2735
r18 = 0.0152682308647 - 0/-270480.2735 = 0.0152682310114
Error Bound = 0.0152682310114 - 0.0152682308647 = 0 < 0.000001IRR = r18 = 0.0152682310114 or 1.53%
Wednesday, May 29, 2013 3:32 AM -
User1584858649 posted
As it is a repeatable bug, I suggest that you report it to Microsoft at https://connect.microsoft.com/dashboard/?wa=wsignin1.0
Please post a link to your report so that other experiencing the same problem may confirm your report.
They "Microsoft" said in a post they won't fix the IRR errornuos function as it will break the rest of their code
Wednesday, May 29, 2013 11:54 AM